Plos One
-
Purkinje cells (PCs) are the sole output neurons of the cerebellar cortex. Although their anatomical connections and physiological response properties have been extensively studied, the causal role of their activity in behavioral, cognitive and autonomic functions is still unclear because PC activity cannot be selectively controlled. Here we developed a novel technique using optogenetics for selective and rapidly reversible manipulation of PC activity in vivo. ⋯ In contrast, manipulation of PC activity within the neighboring lobule VIII had no effect on BP. Blue and orange laser illumination onto PBS-injected lobule IX didn't affect BP, indicating the observed effects on BP were actually due to PC activation and inhibition. These results clearly demonstrate that the optogenetic method we developed here will provide a powerful way to elucidate a causal relationship between local PC activity and functions of the cerebellum.
-
Spinal cord injury is a major cause of disability that has no clinically accepted treatment. Functional decline following spinal cord injury is caused by mechanical damage, secondary cell death, reactive gliosis and a poor regenerative capacity of damaged axons. Wnt proteins are a family of secreted glycoproteins that play key roles in different developmental processes although little is known of the expression patterns and functions of Wnts in the adult central nervous system in normal or diseased states. ⋯ Our results suggest a role for Wnts in spinal cord homeostasis and injury. We demonstrate that after injury Wnt signalling is activated via the Wnt/β-catenin and possibly other pathways. These findings provide an important foundation to further address the function of individual Wnt proteins in vivo and the pathophysiology of spinal cord injury.
-
Diaphragmatic dysfunction found in the patients with acute lung injury required prolonged mechanical ventilation. Mechanical ventilation can induce production of inflammatory cytokines and excess deposition of extracellular matrix proteins via up-regulation of transforming growth factor (TGF)-β1. Lumican is known to participate in TGF-β1 signaling during wound healing. The mechanisms regulating interactions between mechanical ventilation and diaphragmatic injury are unclear. We hypothesized that diaphragmatic damage by short duration of mechanical stretch caused up-regulation of lumican that modulated TGF-β1 signaling. ⋯ Our data showed that high tidal volume mechanical ventilation induced TGF-β1 production, TGF-β1-inducible genes, e.g., collagen, and diaphragmatic dysfunction through activation of the lumican.
-
The innate immune system plays a pivotal role in the primary defence against invasive fungal infection. Genetic variation in genes that regulate this response, initiated by pulmonary macrophages, may influence susceptibility to invasive aspergillosis in patients at risk. We investigated in a clinical setting whether common polymorphisms in Toll-like receptor (TLR) and cytokine genes involved in macrophage regulation are associated with susceptibility to invasive aspergillosis. ⋯ The TLR4 1063A>G single nucleotide polymorphism was associated with invasive aspergillosis when present in donors of allogeneic stem cell transplantation recipients (unadjusted OR 3.77 95%CI 1.08-13.2, p = 0.03). In a multivariate analysis, adjusted for occurrence of graft-versus-host-disease, Cytomegalovirus serostatus and duration of neutropenia, paired presence of the TLR4 1063A>G and IFNG 874T>A single nucleotide polymorphisms showed a trend towards increased susceptibility to invasive aspergillosis (p = 0.04). These findings point to the relevant immunological pathway involved in resistance to invasive aspergillosis and warrant further study of the effects of TLR and cytokine polymorphisms and their interaction, which may occur on different levels of the complex biological interplay between the immunocompromised host and Aspergillus sp.
-
Chronic Obstructive Pulmonary Disease (COPD) is characterized by airspace enlargement and peribronchial lymphoid follicles; however, the immunological mechanisms leading to these pathologic changes remain undefined. Here we show that cigarette smoke is a selective adjuvant that augments in vitro and in vivo Th17, but not Th1, cell differentiation via the aryl hydrocarbon receptor. ⋯ Remarkably, in contrast to WT mice, IL-17RA(-/-) mice failed to develop emphysema after 6 months of cigarette smoke exposure. Taken together, these data demonstrate that cigarette smoke is a potent Th17 adjuvant and that IL-17RA signaling is required for chemokine expression necessary for MMP12 induction and tissue emphysema.