Plos One
-
Leukocyte telomere length (TL) is considered a biomarker for biological aging. Shortened TL has been observed in many complex diseases, including type 2 diabetes (T2DM). Lifestyle intervention studies, e.g. the Diabetes Prevention Study (DPS), have shown a decrease in the incidence of T2DM by promoting healthy lifestyles in individuals with impaired glucose tolerance (IGT). ⋯ It could be due to all participants being overweight and having IGT at baseline, both of which have been found to be independently associated with shorter leukocyte TL in some earlier studies. TL had no substantial role in worsening of glucose tolerance in people with IGT. Our study confirms that leukocyte TL can increase with time even in obese people with impaired glucose metabolism.
-
Persistent non-specific low back pain (nsLBP) is poorly understood by the general community, by educators, researchers and health professionals, making effective care problematic. This study evaluated the effectiveness of a policy-into-practice intervention developed for primary care physicians (PCPs). ⋯ An interprofessional pain education program set within a framework that aligns health policy and practice, encourages PCPs to adopt more self-reported evidence-based attitudes, beliefs and clinical behaviours in their management of patients with nsLBP. However, further research is required to determine cost effectiveness of this approach when compared with other modes of educational delivery and to examine PCP behaviours in actual clinical practice.
-
A network measure called knotty-centrality is defined that quantifies the extent to which a given subset of a graph's nodes constitutes a densely intra-connected topologically central connective core. Using this measure, the knotty centre of a network is defined as a sub-graph with maximal knotty-centrality. A heuristic algorithm for finding subsets of a network with high knotty-centrality is presented, and this is applied to previously published brain structural connectivity data for the cat and the human, as well as to a number of other networks. The cognitive implications of possessing a connective core with high knotty-centrality are briefly discussed.
-
Voltage-gated sodium channels (VGSCs) play a key role in the initiation and propagation of action potentials in neurons. Na(V)1.8 is a tetrodotoxin (TTX) resistant VGSC expressed in nociceptors, peripheral small-diameter neurons able to detect noxious stimuli. Na(V)1.8 underlies the vast majority of sodium currents during action potentials. ⋯ Moreover, treatments with methyl-β-cyclodextrin (MβCD) and 7-ketocholesterol (7KC) led to the dissociation between rafts and Na(V)1.8. By calcium imaging we demonstrated that the lack of association between rafts and Na(V)1.8 correlated with impaired neuronal excitability, highlighted by a reduction in the number of neurons able to conduct mechanically- and chemically-evoked depolarisations. These findings reveal the sub-cellular localisation of Na(V)1.8 in nociceptors and highlight the importance of the association between Na(V)1.8 and lipid rafts in the control of nociceptor excitability.
-
Hemorrhagic shock (HS) is associated with high mortality. A severe decrease in blood pressure causes the intestine, a major site of digestive enzymes, to become permeable - possibly releasing those enzymes into the circulation and peritoneal space, where they may in turn activate other enzymes, e.g. matrix metalloproteinases (MMPs). If uncontrolled, these enzymes may result in pathophysiologic cleavage of receptors or plasma proteins. ⋯ MMP-9 concentrations and activities were significantly upregulated after hemorrhagic shock in plasma, peritoneal fluid, heart, liver, and lung. These results indicate that protease activities, including that of trypsin, increase in sites distant from the intestine after hemorrhagic shock. Proteases, including pancreatic proteases, may be shock mediators and potential targets for therapy in shock.