Plos One
-
General anesthesia is a reversible state of unconsciousness and depression of reflexes to afferent stimuli induced by administration of a "cocktail" of chemical agents. The multi-component nature of general anesthesia complicates the identification of the precise mechanisms by which anesthetics disrupt consciousness. Devices that monitor the depth of anesthesia are an important aide for the anesthetist. This paper investigates the use of effective connectivity measures from human electrical brain activity as a means of discriminating between 'awake' and 'anesthetized' state during induction and recovery of consciousness under general anesthesia. ⋯ GC-based features could be utilized effectively in a device for monitoring depth of anesthesia during surgery.
-
Neurofibromatosis (NF1) represents the most common single gene cause of learning disabilities. NF1 patients have impairments in frontal lobe based cognitive functions such as attention, working memory, and inhibition. Due to its well-characterized genetic etiology, investigations of NF1 may shed light on neural mechanisms underlying such difficulties in the general population or other patient groups. ⋯ Such alterations of white matter tracts connecting frontal regions could contribute to the observed cognitive deficits. Furthermore, although the cellular basis of these white matter microstructural alterations remains to be determined, our findings of disproportionately increased radial diffusion against a background of increased white matter volume suggest the novel hypothesis that one potential alteration contributing to increased cortical white matter in NF1 may be looser packing of axons, with or without myelination changes. Further, this indicates that axial and radial diffusivity can uniquely contribute as markers of NF1-associated brain pathology in conjunction with the typically investigated measures.
-
Randomized Controlled Trial
Efficacy of memantine for agitation in Alzheimer's dementia: a randomised double-blind placebo controlled trial.
Agitation in Alzheimer's disease (AD) is common and associated with poor patient life-quality and carer distress. The best evidence-based pharmacological treatments are antipsychotics which have limited benefits with increased morbidity and mortality. There are no memantine trials in clinically significant agitation but post-hoc analyses in other populations found reduced agitation. We tested the primary hypothesis, memantine is superior to placebo for clinically significant agitation, in patients with moderate-to-severe AD. ⋯ Memantine did not improve significant agitation in people with in moderate-to-severe AD. Future studies are urgently needed to test other pharmacological candidates in this group and memantine for neuropsychiatric symptoms.
-
Comparative Study
Comparison of brief cognitive tests and CSF biomarkers in predicting Alzheimer's disease in mild cognitive impairment: six-year follow-up study.
Early identification of Alzheimer's disease (AD) is needed both for clinical trials and in clinical practice. In this study, we compared brief cognitive tests and cerebrospinal fluid (CSF) biomarkers in predicting conversion from mild cognitive impairment (MCI) to AD. ⋯ The MMSE and the clock drawing test were as accurate as CSF biomarkers in predicting future development of AD in patients with MCI. Combining both instruments provided significantly greater accuracy than cognitive tests or CSF biomarkers alone in predicting AD.
-
Ghrelin is a stomach-derived hormone that regulates food intake and neuroendocrine function by acting on its receptor, GHSR (Growth Hormone Secretagogue Receptor). Recent evidence indicates that a key function of ghrelin is to signal stress to the brain. It has been suggested that one of the potential stress-related ghrelin targets is the CRF (Corticotropin-Releasing Factor)-producing neurons of the hypothalamic paraventricular nucleus, which secrete the CRF neuropeptide into the median eminence and activate the hypothalamic-pituitary-adrenal axis. ⋯ Ghrelin administration directly into the paraventricular nucleus of the hypothalamus also induces c-fos within the CRF-producing neurons and the hypothalamic-pituitary-adrenal axis, without any significant effect on the food intake. Interestingly, dual-label immunohistochemical analysis and ghrelin binding studies failed to show GHSR expression in CRF neurons. Thus, we conclude that ghrelin activates hypophysiotropic CRF neurons, albeit indirectly.