Plos One
-
Acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), are characterised by high-protein pulmonary edema and severe hypoxaemic respiratory failure due to increased permeability of pulmonary microvascular endothelial cells (PMVEC). Alveolar epithelial cells (AEC) contribute importantly to normal alveolar function, and AEC dysfunction in ALI/ARDS is associated with worse outcomes. We hypothesized that AEC can modulate human PMVEC barrier function, and investigated the effects of AEC presence on human PMVEC barrier under septic conditions in vitro. ⋯ Cytomix-stimulated PMN-dependent PMVEC hyper-permeability and trans-PMVEC PMN migration were also inhibited in the presence of A549 cells or A549 cell-conditioned medium (p<0.05). Human AEC appear to protect human PMVEC barrier function under septic conditions in vitro, through release of a soluble mediator(s), which are at least partly lipid in nature. This study suggests a scientific and potential clinical therapeutic importance of epithelial-endothelial cross talk in maintaining alveolar integrity in ALI/ARDS.
-
A patient's journey through the health care system is influenced by clinical and system processes across the continuum of care. ⋯ The scenario analysis using the BC ACT Model V1.0 demonstrates the flexibility and value of the simulation model as a decision-making tool by providing estimates of the effects of different interventions and allowing them to be objectively compared. Future work will involve developing a generalizable national Canadian ACT Model to examine differences in care delivery and identify the ideal attributes of SCI care delivery.
-
This article aims to investigate whether auditory stimuli in the horizontal plane, particularly originating from behind the participant, affect audiovisual integration by using behavioral and event-related potential (ERP) measurements. In this study, visual stimuli were presented directly in front of the participants, auditory stimuli were presented at one location in an equidistant horizontal plane at the front (0°, the fixation point), right (90°), back (180°), or left (270°) of the participants, and audiovisual stimuli that include both visual stimuli and auditory stimuli originating from one of the four locations were simultaneously presented. These stimuli were presented randomly with equal probability; during this time, participants were asked to attend to the visual stimulus and respond promptly only to visual target stimuli (a unimodal visual target stimulus and the visual target of the audiovisual stimulus). ⋯ However, no significant interactions were found between visual stimuli and auditory stimuli from the right or left. Two main ERP components related to audiovisual integration were found: first, auditory stimuli from the front location produced an ERP reaction over the right temporal area and right occipital area at approximately 160-200 milliseconds; second, auditory stimuli from the back produced a reaction over the parietal and occipital areas at approximately 360-400 milliseconds. Our results confirmed that audiovisual integration was also elicited, even though auditory stimuli were presented behind the participant, but no integration occurred when auditory stimuli were presented in the right or left spaces, suggesting that the human brain might be particularly sensitive to information received from behind than both sides.
-
Previous work has shown that disruption of the gene for group X secreted phospholipase A2 (sPLA2-X) markedly diminishes airway hyperresponsiveness and remodeling in a mouse asthma model. With the large number of additional sPLA2s in the mammalian genome, the involvement of other sPLA2s in the asthma model is possible - in particular, the group V sPLA2 (sPLA2-V) that like sPLA2-X is highly active at hydrolyzing membranes of mammalian cells. ⋯ This paper illustrates the diverse roles of sPLA2s in the immunopathogenesis of the asthma phenotype and directs attention to developing specific inhibitors of sPLA2-V as a potential new therapy to treat asthma and other allergic disorders.
-
Physical exercise improves multiple aspects of hippocampal function. In line with the notion that neuronal activity is key to promoting neuronal functions, previous literature has consistently demonstrated that acute bouts of exercise evoke neuronal activation in the hippocampus. Repeated activating stimuli lead to an accumulation of the transcription factor ΔFosB, which mediates long-term neural plasticity. ⋯ Interestingly, we found that FosB/ΔFosB expression in the DG was positively correlated with the number of doublecortin-immunoreactive (i.e., immature) neurons. Although the mechanisms by which ΔFosB mediates exercise-induced neurogenesis are still uncertain, these data imply that exercise-induced neurogenesis is at least activity dependent. Taken together, our current results suggest that ΔFosB is a new molecular target involved in regulating exercise-induced hippocampal plasticity.