Plos One
-
Hydrogen sulphide (H2S) was found to attenuate ventilator or oleic acid induced lung injury. The aim of this study was to explore the effects of exogenous H2S donor, sodium Hydrosulphide (NaHS), on lung injury following blast limb trauma and the underlying mechanisms. For in vitro experiments, pulmonary micro-vessel endothelial cells (PMVECs) were cultured and treated with NaHS or vehicle in the presence of TNF-α. ⋯ In vivo, NaHS treatment significantly alleviated lung injury following blast limb trauma, demonstrated by a decreased histopathological score and lung water content. Furthermore, NaHS treatment reversed the decrease of H2S concentration in plasma, prevented the increase of TNF-α, IL-6, malondialdehyde and myeloperoxidase, increased the Nrf2 downstream effector glutathione in both plasma and lungs, and reversed the decrease of superoxide dismutase in both plasma and lungs induced by blast limb trauma. Our data indicated that NaHS protects against lung injury following blast limb trauma which is likely associated with suppression of the inflammatory and oxidative response and activation of Nrf2 cellular signal.
-
Synapse elimination in the adult central nervous system can be modelled by axotomy of spinal motoneurons which triggers removal of synapses from the cell surface of lesioned motoneurons by processes that remain elusive. Proposed candidate mechanisms are removal of synapses by reactive microglia and astrocytes, based on the remarkable activation of these cell types in the vicinity of motoneurons following axon lesion, and/or decreased expression of synaptic adhesion molecules in lesioned motoneurons. In the present study, we investigated glia activation and adhesion molecule expression in motoneurons in two mouse strains with deviant patterns of synapse elimination following axotomy. ⋯ In spite of the fact that the two mouse strains display very different degrees of synapse elimination, no differences in terms of glial activation or in the downregulation of the studied adhesion molecules (SynCAM1, neuroligin-2,-3 and netrin G-2 ligand) could be detected. We conclude that neither glia activation nor downregulation of synaptic adhesion molecules are correlated to the different extent of the synaptic stripping in the two studied strains. Instead the magnitude of the stripping event is most likely a consequence of a precise molecular signaling, which at least in part is mediated by immune molecules.
-
Duloxetine, a serotonin and noradrenaline reuptake inhibitor, and celecoxib, a non-steroidal anti-inflammatory drug, are commonly used analgesics for persistent pain, however with moderate gastrointestinal side effects or analgesia tolerance. One promising analgesic strategy is to give a combined prescription, allowing the maximal or equal efficacy with fewer side effects. In the current study, the efficacy and side effects of combined administration of duloxetine and celecoxib were tested in the mouse formalin pain model. ⋯ A statistical difference between the theoretical and experimental ED50 for the second phase pain responses was observed, which indicated synergistic interaction of the two drugs. Concerning the emotional pain responses revealed with USVs, we assumed that the antinociceptive effects were almost completely derived from duloxetine, since celecoxib was ineffective when administered alone or reduced the dosage of duloxetine when given in combination. Based on the above findings, acute concomitant administration of duloxetine and celecoxib showed synergism on the somatic pain behavior but not emotional pain behaviors.
-
Red blood cells (RBC) possess a nitric oxide synthase (RBC-NOS) whose activation depends on the PI3-kinase/Akt kinase pathway. RBC-NOS-produced NO exhibits important biological functions like maintaining RBC deformability. Until now, the cellular target structure for NO, to exert its influence on RBC deformability, remains unknown. In the present study we analyzed the modification of RBC-NOS activity by pharmacological treatments, the resulting influence on RBC deformability and provide first evidence for possible target proteins of RBC-NOS-produced NO in the RBC cytoskeletal scaffold. ⋯ This study first-time provides strong evidence that RBC-NOS-produced NO modifies RBC deformability through direct S-nitrosylation of cytoskeleton proteins, most likely α- and β-spectrins. Our data, therefore, gain novel insights into biological functions of RBC-NOS by connecting impaired RBC deformability abilities to specific posttranslational modifications of RBC proteins. By identifying likely NO-target proteins in RBC, our results will stimulate new therapeutic approaches for patients with microvascular disorders.
-
Previous research has shown that being affectively unstable is an indicator of several forms of psychological maladjustment. However, little is known about the mechanisms underlying affective instability. ⋯ We investigated this hypothesis by relating affective instability, assessed in daily life using the experience sampling method, to self-reported emotion regulation strategies and to parasympathetically mediated heart rate variability (HRV), a physiological indicator of emotion regulation capacity. Results showed that HRV was negatively related to instability of positive affect (as measured by mean square successive differences), indicating that individuals with lower parasympathetic tone are emotionally less stable, particularly for positive affect.