Plos One
-
Monocytic cells exhibit a high level of heterogeneity and have two distinct modes of their activation: 1) classical M1 path associated with inflammation and tissue damage, and 2) alternative M2 path. Although it has been demonstrated that M2 macrophages play an important role in the regulation of the allergic immune responses, tissue maintenance and repair, little is known about the mechanisms that determine the M2 phenotype. We have previously shown that miR-124 is expressed in microglia that exhibit the M2 phenotype and overexpression of miR-124 in macrophages resulted in downregulation of a number of M1 markers (MHC class II, CD86) and up-regulation of several M2 markers (Fizz1, Arg1). ⋯ Upregulation of several M2 markers (CD206, Ym1) and downregulation of the M1 markers (CD86, iNOS, TNF) in M2-polarized macrophages was abrogated by a miR-124 inhibitor, suggesting that this microRNA contributed to the M2 phenotype development and maintenance. Finally we showed that human CD14(+)CD16(+) intermediate monocytes, which are found in increased numbers in patients with allergies and bronchial asthma, expressed high levels of miR-124 and exhibited other properties of M2-like cells. Thus, our study suggests that miR-124 serves as a regulator of the M2 polarization in various subsets of monocytic cells both in vitro and in vivo.
-
Increases in ceramide levels have been implicated in the pathogenesis of both acute or chronic lung injury models. However, the role of individual ceramide species, or of the enzymes that are responsible for their synthesis, in lung health and disease has not been clarified. ⋯ Despite relatively preserved total lung ceramide levels, inhibition of de novo sphingolipid synthesis at the level of CerS2 was associated with significant airflow obstruction, airway inflammation, and increased lung volumes. Our results suggest that ceramide species homeostasis is crucial for lung health and that CerS2 dysfunction may predispose to inflammatory airway and airspace diseases.
-
To overcome the limitations of conventional diffusion tensor magnetic resonance imaging resulting from the assumption of a Gaussian diffusion model for characterizing voxels containing multiple axonal orientations, Shannon's entropy was employed to evaluate white matter structure in human brain and in brain remodeling after traumatic brain injury (TBI) in a rat. ⋯ Entropy measurement is more effective in distinguishing axonal remodeling after injury, when compared with FA. Entropy is also more sensitive to axonal density than axonal orientation, and thus may provide a more accurate reflection of axonal changes that occur in neurological injury and disease.
-
Acute lung injury (ALI) is characterized by overwhelming lung inflammation and anti-inflammation treatment is proposed to be a therapeutic strategy for ALI. Poly (ADP-ribose) polymerase-1 has been demonstrated to be involved in tissue inflammation and one of its inhibitors, 3, 4-Dihydro-5[4-(1-piperindinyl)butoxy]-1(2H)-isoquinoline (DPQ), exerts anti-inflammatory effect. However, it is still unclear whether the DPQ possesses the protective effect on ALI and what mechanisms are involved. ⋯ In addition, we isolated mice peritoneal macrophages and showed pretreatment with DPQ at 10 μM inhibited the production of cytokines in the macrophages following LPS stimulation. DPQ treatment also inhibited the phosphorylation and degradation of IκB-α, subsequently blocked the activation of nuclear factor (NF)-κB induced by LPS in vivo and in vitro. Taken together, our results show that DPQ treatment inhibits NF-κB signaling in macrophages and protects mice against ALI induced by LPS, suggesting inhibition of Poly (ADP-ribose) polymerase-1 may be a potential and effective approach to resolve inflammation for the treatment of ALI.
-
L-DOPA-induced dyskinesia is a common side effect developed after chronic treatment with 3,4-dihydroxyphenyl-l-alanine (l-DOPA) in Parkinson's disease. The biological mechanisms behind this side effect are not fully comprehended although involvement of dopaminergic, serotonergic, and glutamatergic systems has been suggested. The present study utilizes in vivo amperometry to investigate the impact from unilateral 6-hydroxydopamine lesions and l-DOPA (4 mg/kg, including benserazide 15 mg/kg) -induced dyskinetic behavior on striatal basal extracellular glutamate concentration and potassium-evoked glutamate release in urethane-anesthetized rats. ⋯ Furthermore, acute striatal L-DOPA administration attenuated glutamate release in all groups, except in the dopamine-lesioned striatum of dyskinetic animals. Co-administration of 8-OHDPAT and L-DOPA decreased dyskinesia in dopamine-lesioned animals, but did not affect potassium-evoked glutamate release, which was seen in normal animals. These findings indicate altered glutamate transmission upon dopamine-depletion and dyskinesia.