Plos One
-
Spinal muscular atrophy (SMA) is caused by loss of the Survival Motor Neuron 1 (SMN1) gene, resulting in reduced SMN protein. Humans possess the additional SMN2 gene (or genes) that does produce low level of full length SMN, but cannot adequately compensate for loss of SMN1 due to aberrant splicing. The majority of SMN2 gene transcripts lack exon 7 and the resultant SMNΔ7 mRNA is translated into an unstable and non-functional protein. ⋯ Antisense oligonucleotides targeting this motif promoted SMN2 exon 7 retention in the mature SMN2 transcripts, with increased SMN expression detected in SMA fibroblasts. We report here systematic optimisation of phosphorodiamidate morpholino oligonucleotides (PMO) that promote exon 7 retention to levels that rescued the phenotype in a severe mouse model of SMA after intracerebroventricular delivery. Furthermore, the PMO gives the longest survival reported to date after a single dosing by ICV.
-
Mesenchymal stem cell (MSC) administration via the intranasal route could become an effective therapy to treat neonatal hypoxic-ischemic (HI) brain damage. We analyzed long-term effects of intranasal MSC treatment on lesion size, sensorimotor and cognitive behavior, and determined the therapeutic window and dose response relationships. Furthermore, the appearance of MSCs at the lesion site in relation to the therapeutic window was examined. ⋯ Improvement of sensorimotor function and histological outcome was maintained until at least 9 weeks post-HI. The capacity of MSCs to reach the lesion site within 24 h after intranasal administration at 10 days but not at 17 days post-HI indicates a therapeutic window of at least 10 days. Our data strongly indicate that intranasal MSC treatment may become a promising non-invasive therapeutic tool to effectively reduce neonatal encephalopathy.
-
Intratracheal transplantation of human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) attenuates the hyperoxia-induced neonatal lung injury. The aim of this study was to optimize the timing of MSCs transplantation. Newborn Sprague-Dawley rats were randomly exposed to hyperoxia (90% for 2 weeks and 60% for 1 week) or normoxia after birth for 21 days. ⋯ Hyperoxia-induced decrease in hepatocyte growth factor and vascular endothelial growth factor was significantly up-regulated in both HT3 and HT3+10, but not in HT10. In summary, intratracheal transplantation of human UCB derived MSCs time-dependently attenuated hyperoxia-induced lung injury in neonatal rats, showing significant protection only in the early but not in the late phase of inflammation. There were no synergies with combined early+late MSCs transplantation.
-
The minimal physical activity intensity that would confer health benefits among adolescents is unknown. The purpose of this study was to examine the associations of accelerometer-derived light-intensity (split into low and high) physical activity, and moderate- to vigorous-intensity physical activity with cardiometabolic biomarkers in a large population-based sample. ⋯ Time spent in low light-intensity physical activity and high light-intensity physical activity had some favorable associations with biomarkers. Consistent with current physical activity recommendations for adolescents, moderate- to vigorous-intensity activity had favorable associations with many cardiometabolic biomarkers. While increasing MVPA should still be a public health priority, further studies are needed to identify dose-response relationships for light-intensity activity thresholds to inform future recommendations and interventions for adolescents.
-
Abnormalities in large-scale, structural and functional brain connectivity have been increasingly reported in patients with major depressive disorder (MDD). However, MDD-related alterations in functional interaction between the cerebral hemispheres are still not well understood. Resting state fMRI, which reveals spontaneous neural fluctuations in blood oxygen level dependent signals, provides a means to detect interhemispheric functional coherence. We examined the resting state functional connectivity (RSFC) between the two hemispheres and its relationships with clinical characteristics in MDD patients using a recently proposed measurement named "voxel-mirrored homotopic connectivity (VMHC)". ⋯ These findings suggest that the functional coordination between homotopic brain regions is impaired in MDD patients, thereby providing new evidence supporting the interhemispheric connectivity deficits of MDD. The significant correlations between the VMHC and clinical characteristics in MDD patients suggest potential clinical implication of VMHC measures for MDD. Interhemispheric RSFC may serve as a useful screening method for evaluating MDD where neural connectivity is implicated in the pathophysiology.