Plos One
-
p38 MAPK activity plays an important role in several steps of the osteoblast lineage progression through activation of osteoblast-specific transcription factors and it is also essential for the acquisition of the osteoblast phenotype in early development. Although reports indicate p38 signalling plays a role in early skeletal development, its specific contributions to adult bone remodelling are still to be clarified. ⋯ Our data demonstrates that, in addition to early skeletogenesis, p38α is essential for osteoblasts to maintain their function in mineralized adult bone, as bone anabolism should be sustained throughout life. Moreover, our data also emphasizes that clinical development of p38 inhibitors should take into account their potential bone effects.
-
Caldendrin, L- and S-CaBP1 are CaM-like Ca2+-sensors with different N-termini that arise from alternative splicing of the Caldendrin/CaBP1 gene and that appear to play an important role in neuronal Ca2+-signaling. In this paper we show that Caldendrin is abundantly present in brain while the shorter splice isoforms L- and S-CaBP1 are not detectable at the protein level. Caldendrin binds both Ca2+ and Mg2+ with a global Kd in the low µM range. ⋯ Further evidence for intra- and intermolecular interactions of Caldendrin came from gel-filtration, surface plasmon resonance, dynamic light scattering and FRET assays. Surprisingly, Caldendrin exhibits very little change in surface hydrophobicity and secondary as well as tertiary structure upon Ca2+-binding to Mg2+-saturated protein. Complex inter- and intramolecular interactions that are regulated by Ca2+-binding, high Mg2+- and low Ca2+-binding affinity, a rigid first EF-hand domain and little conformational change upon titration with Ca2+ of Mg2+-liganted protein suggest different modes of binding to target interactions as compared to classical neuronal Ca2+-sensors.
-
Cystic fibrosis (CF) airways disease represents an example of polymicrobial infection whereby different bacterial species can interact and influence each other. In CF patients Staphylococcus aureus is often the initial pathogen colonizing the lungs during childhood, while Pseudomonas aeruginosa is the predominant pathogen isolated in adolescents and adults. During chronic infection, P. aeruginosa undergoes adaptation to cope with antimicrobial therapy, host response and co-infecting pathogens. ⋯ P. aeruginosa reference and early strains, isolated at the onset of chronic infection, outcompeted S. aureus in vitro and in vivo models of co-infection. On the contrary, our results indicated a reduced capacity to outcompete S. aureus of P. aeruginosa patho-adaptive strains, isolated after several years of chronic infection and carrying several phenotypic changes temporally associated with CF lung adaptation. Our findings provide relevant information with respect to interspecies interaction and disease progression in CF.
-
Morphine and structurally related derivatives are highly effective analgesics, and the mainstay in the medical management of moderate to severe pain. Pharmacological actions of opioid analgesics are primarily mediated through agonism at the µ opioid peptide (MOP) receptor, a G protein-coupled receptor. Position 17 in morphine has been one of the most manipulated sites on the scaffold and intensive research has focused on replacements of the 17-methyl group with other substituents. ⋯ In vivo, they were highly effective against acute thermal nociception in mice with marked increased antinociceptive potency compared to the lead molecules. It was also demonstrated that a carbonyl group at position 6 is preferable to a hydroxyl function in these N-phenethyl derivatives, enhancing MOP receptor affinity and agonist potency in vitro and in vivo. These results expand the understanding of the impact of different moieties at the morphinan nitrogen on ligand-receptor interaction, molecular mode of action and signaling, and may be instrumental to the development of new opioid therapeutics.
-
When faced with sensory stimuli, an organism may be required to detect very small differences in a physical parameter (discrimination), while in other situations it may have to generalize over many possible values of the same physical parameter. This decision may be based both on learned information and on sensory aspects of perception. In the present study we describe frequency processing in the behaving mouse using both discrimination and generalization as two key aspects of behaviour. ⋯ In contrast, pre-exposure frequencies that were half an octave or less below the conditioned tone elicited latent inhibition, showing a generalization bandwidth of at least half an octave. Thus, in the same apparatus and using the same general memory paradigm, mice showed generalization gradients that were considerably wider than their discrimination threshold, indicating that environmental requirements and previous experience can determine whether the same two frequencies will be considered same or different. Remarkably, generalization gradients paralleled the typical bandwidths established in the auditory periphery and midbrain, suggesting that frequencies may be considered similar when falling within the same critical band.