Plos One
-
In biomedical journals authors sometimes use the standard error of the mean (SEM) for data description, which has been called inappropriate or incorrect. ⋯ In three selected cardiovascular journals we found a high level of inappropriate SEM use and explicit methods statements to use it for data description, especially in basic science studies. To improve on this situation, these and other journals should provide clear instructions to authors on how to report descriptive information of empirical data.
-
Endothelial dysfunction associated with systemic inflammation can contribute to organ injury/failure following cardiac surgery requiring cardiopulmonary bypass (CPB). Roundabout protein 4 (Robo4), an endothelial-expressed transmembrane receptor and regulator of cell activation, is an important inhibitor of endothelial hyper-permeability. We investigated the hypothesis that plasma levels of Robo4 are indicative of organ injury, in particular acute kidney injury (AKI), after cardiac surgery. ⋯ Plasma Robo4 levels are increased, transiently, following cardiac surgery requiring CPB; and higher levels in patients with AKI suggest a link between endothelial dysregulation and onset of AKI.
-
Since the initial publication of the International Study of Unruptured Intracranial Aneurysms (ISUIA), management of unruptured intracranial aneurysms has been mainly based on the size of the aneurysm. The contribution of morphological characteristics to treatment decisions of unruptured aneurysms has not been well studied in a systematic and location specific manner. We present a large sample of basilar artery tip aneurysms (BTA) that were assessed using a diverse array of morphological variables to determine the parameters associated with ruptured aneurysms. ⋯ Multivariate logistic regression revealed that a larger angle between the posterior cerebral arteries (P1-P1 angle, p = 0.037) was most strongly associated with aneurysm rupture after adjusting for other morphological variables. In this location specific study of BTA aneurysms, the larger the angle formed between posterior cerebral arteries was found to be a new morphological parameter significantly associated with ruptured BTA aneurysms. This is a physically intuitive parameter that can be measured easily and readily applied in the clinical setting.
-
The difficulties in the management of the blunt chest wall trauma patient in the Emergency Department due to the development of late complications are well recognised in the literature. Pre-injury anti-platelet therapy has been previously investigated as a risk factor for poor outcomes following traumatic head injury, but not in the blunt chest wall trauma patient cohort. The aim of this study was to investigate pre-injury anti-platelet therapy as a risk factor for the development of complications in the recovery phase following blunt chest wall trauma. ⋯ Pre-injury anti-platelet therapy is being increasingly used as a first line treatment for a number of conditions and there is a concurrent increase in trauma in the elderly population. Pre-injury anti-platelet therapy should be considered as a risk factor for the development of complications by clinicians managing blunt chest wall trauma.
-
SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. ⋯ Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak.