Plos One
-
Bone cancer pain is the most severe among cancer pain and is often resistant to current analgesics. Thus, the development of novel analgesics effective at treating bone cancer pain are desired. Platelet-activating factor (PAF) receptor antagonists were recently demonstrated to have effective pain relieving effects on neuropathic pain in several animal models. ⋯ The combination of morphine with PAF receptor antagonists develops marked enhancement of the analgesic effect against bone cancer pain without affecting morphine-induced constipation. Repeated administration of TCV-309 suppressed the appearance of pain behaviors and prolonged survival of FBC mice. The present results suggest that PAF receptor antagonists in combination with, or without, opioids may represent a new strategy for the treatment of persistent bone cancer pain and improve the quality of life of patients.
-
The mechanisms contributing to multiorgan dysfunction during cardiogenic shock are poorly understood. Our goal was to characterize the microcirculatory and mitochondrial responses following ≥ 10 hours of severe left ventricular failure and cardiogenic shock. We employed a closed-chest porcine model of cardiogenic shock induced by left coronary microembolization (n = 12) and a time-matched control group (n = 6). ⋯ Mitochondrial viability (RCR; state 3/state 4) and efficiency (ADP/O ratio) were unaffected. Our study demonstrates that the microcirculation is preserved in a porcine model of untreated cardiogenic shock despite vital organ hypoperfusion. Renal and hepatic mitochondrial respiration is upregulated, possibly through demand-related adaptations, and the endogenous shock response is thus compensatory and protective, even after several hours of global hypoperfusion.
-
The hepatopulmonary syndrome (HPS) develops when pulmonary vasodilatation leads to abnormal gas exchange. However, in human HPS, restrictive ventilatory defects are also observed supporting that the alveolar epithelial compartment may also be affected. Alveolar type II epithelial cells (AT2) play a critical role in maintaining the alveolar compartment by producing four surfactant proteins (SPs, SP-A, SP-B, SP-C and SP-D) which also facilitate alveolar repair following injury. ⋯ Furthermore, we found that administration of TNF-α, the bile acid, chenodeoxycholic acid, and FXR nuclear receptor activation (GW4064) induced apoptosis and impaired SP-B and SP-C production in alveolar epithelial cells in vitro. These results imply that AT2 cell dysfunction occurs in experimental HPS and is associated with alterations in the alveolar epithelial compartment. Our findings support a novel contributing mechanism in experimental HPS that may be relevant to humans and a potential therapeutic target.
-
Major depressive disorder (MDD) is a debilitating disease affecting a wide cross section of people around the world. The current therapy for depression is less than adequate and there is a considerable unmet need for more efficacious treatment. Dopamine has been shown to play a significant role in depression including production of anhedonia which has been one of the untreated symptoms in MDD. ⋯ The optimal efficacy dose did not produce any locomotor activation. Microdialysis experiment demonstrated that systemic administration of D-473 elevated extracellular level of the three monoamines DA, 5-HT, and NE efficaciously in the dorsal lateral striatum (DLS) and the medial prefrontal cortex (mPFC) area, indicating in vivo blockade of all three monoamine transporters by D-473. Thus, the current biological data from D-473 indicate potent antidepressant activity of the molecule.
-
Traumatic brain injury (TBI) is a major cause of death and long-term disability worldwide. To date, there are no effective pharmacological treatments for TBI. Recombinant human tissue plasminogen activator (tPA) is the effective drug for the treatment of acute ischemic stroke. ⋯ Animals with TBI were treated intranasally with saline or tPA initiated 7 days after TBI. Compared with saline treatment, subacute intranasal tPA treatment significantly 1) improved cognitive (Morris water maze test) and sensorimotor (footfault and modified neurological severity score) functional recovery in rats after TBI, 2) reduced the cortical stimulation threshold evoking ipsilateral forelimb movement, 3) enhanced neurogenesis in the dentate gyrus and axonal sprouting of the corticospinal tract originating from the contralesional cortex into the denervated side of the cervical gray matter, and 4) increased the level of mature brain-derived neurotrophic factor. Our data suggest that subacute intranasal tPA treatment improves functional recovery and promotes brain neurogenesis and spinal cord axonal sprouting after TBI, which may be mediated, at least in part, by tPA/plasmin-dependent maturation of brain-derived neurotrophic factor.