Plos One
-
Glioblastoma (GBM) heterogeneity in the genomic and phenotypic properties has potentiated personalized approach against specific therapeutic targets of each GBM patient. The Cancer Genome Atlas (TCGA) Research Network has been established the comprehensive genomic abnormalities of GBM, which sub-classified GBMs into 4 different molecular subtypes. The molecular subtypes could be utilized to develop personalized treatment strategy for each subtype. ⋯ Subtype specific drugs not only showed significant inhibition effects on the in vitro clonogenicity of patient-derived GBM cells but also synergistically reversed temozolomide resistance of MGMT-unmethylated patient-derived GBM cells. However, inhibitory effects on the clonogenicity were not totally subtype-specific. Personalized treatment approach based on genetic characteristics of each GBM could make better treatment outcomes of GBMs, although more sophisticated classifying techniques and subtype specific drugs need to be further elucidated.
-
Neutrophil extracellular traps (NETs) represent extracellular microbial trapping and killing. Recently, it has been implicated in thrombogenesis, autoimmune disease, and cancer progression. The aim of this study was to characterize NETs in various organs of a murine sepsis model in vivo and to investigate their associations with platelets, leukocytes, or vascular endothelium. ⋯ Microvessel occlusions which may be caused by platelet aggregates or leukocyte-platelet aggregates and heterogeneously decreased blood flow were also observed in septic mice. NETs appeared to be associated with the formation of platelet aggregates or leukocyte-platelet aggregates. These observational findings may suggest the adverse effect of intravascular NETs on the host during a sepsis.
-
Soft drugs are molecules that are purposefully designed to be rapidly metabolized (metabolically labile). In anesthesia, the soft drug is useful because it enables precise titration to effect and rapid recovery, which might allow swift and clear-headed recovery of consciousness and early home readiness. Propofol may cause delayed awakening after prolonged infusion. Propanidid and AZD3043 have a different metabolic pathway compared to propofol, resulting in a short-acting clinical profile. Fluorine imparts a variety of properties to certain medicines, including an enhanced absorption rate and improved drug transport across the blood-brain barrier. We hypothesized that the introduction of fluorine to the frame structure of propanidid and AZD3043 would further accelerate the swift and clear-headed recovery of consciousness. To test this hypothesis, we developed a series of fluorine-containing phenyl acetate derivatives. ⋯ The rapid recovery might make compound 5j suitable for precise titration and allow swift and clear-headed recovery of consciousness and early home readiness.
-
To explore the roles of C-X-C chemokine receptor type 4 (CXCR4) in spinal processing of neuropathic pain at the central nervous system (CNS). ⋯ Our results suggest that central (spinal) CXCR4 is involved in the development and maintenance of PNP and the regulation of multiple spinal molecular events under pain condition, implicating that CXCR4 would potentially be a therapeutic target for chronic neuropathic pain.
-
Liver dysfunction and cirrhosis affect vasculature in several organ systems and cause impairment of organ functions, thereby increasing morbidity and mortality. Establishment of a mouse model of hepatopulmonary syndrome (HPS) would provide greater insights into the genetic basis of the disease. Our objectives were to establish a mouse model of lung injury after common bile duct ligation (CBDL) and to investigate pulmonary pathogenesis for application in future therapeutic approaches. ⋯ We constructed a mouse lung injury model by using CBDL. Contrary to our expectation, lung pathology in our mouse model exhibited differences from that of rat models, and the mechanisms responsible for these differences are unknown. This phenomenon may be explained by contrasting processes related to TNF induction of angiogenic signaling pathways in the inflammatory phase. Thus, we suggest that our mouse model can be applied to pulmonary pathological analyses in the inflammatory phase, i.e., to systemic inflammatory response syndrome, acute lung injury, and multiple organ dysfunction syndrome.