Plos One
-
The firing patterns of cerebellar Purkinje cells (PCs), as the sole output of the cerebellar cortex, determine and tune motor behavior. PC firing is modulated by various inputs from different brain regions and by cell-types including granule cells (GCs), climbing fibers and inhibitory interneurons. To understand how signal integration in PCs occurs and how subtle changes in the modulation of PC firing lead to adjustment of motor behaviors, it is important to precisely record PC firing in vivo and to control modulatory pathways in a spatio-temporal manner. ⋯ With this method we are able to variably position the light-guide in defined regions relative to the recording electrode with micrometer precision. We show that PC firing can be precisely monitored and modulated by light-activation of channelrhodopsin-2 (ChR2) expressed in PCs, GCs and interneurons. Thus, this method is ideally suited to investigate the spatio/temporal modulation of PCs in anesthetized and in behaving mice.
-
In clinical practice, there is a lack of markers for the non-invasive diagnosis and follow-up of kidney disease. Exosomes are membrane vesicles, which are secreted from their cells of origin into surrounding body fluids and contain proteins and mRNA which are protected from digestive enzymes by a cell membrane. ⋯ In this proof-of-concept study, we could demonstrate that changes in urinary exosomal cystatin C mRNA expression are representative of changes in renal mRNA and protein expression. Because cells lining the urinary tract produce urinary exosomal cystatin C mRNA, it might be a more specific marker of renal damage than glomerular-filtered free cystatin C.
-
The Lipid A moiety of endotoxin potently activates TLR-4 dependent host innate immune responses. We demonstrate that Lipid-A mediated leukotriene biosynthesis regulates pathogen-associated molecular patterns (PAMP)-dependent macrophage activation. Stimulation of murine macrophages (RAW264.7) with E. coli 0111:B4 endotoxin (LPS) or Kdo2-lipid A (Lipid A) induced inflammation and Lipid A was sufficient to induce TLR-4 mediated macrophage inflammation and rapid ERK activation. ⋯ Furthermore, MK591 pre-treatment enhanced ERK activation and inhibited cell proliferation after LPS or Lipid A stimulation. These effects were regulated in part by increased apoptosis and modulation of cell surface TLR expression. Together, these data clarify the mechanistic association between 5-lipoxygenase activating protein-mediated leukotriene biosynthesis and 5-LO dependent eicosanoid metabolites in mediating the TLR-dependent inflammatory response after endotoxin exposure typical of bacterial sepsis.
-
Wars in Iraq and Afghanistan have highlighted the problems of diagnosis and treatment of mild traumatic brain injury (mTBI). MTBI is a heterogeneous injury that may lead to the development of neurological and behavioral disorders. In the absence of specific diagnostic markers, mTBI is often unnoticed or misdiagnosed. ⋯ Thirteen miRNAs were found to identify mTBI regardless of its severity within the mild spectrum of injury. Bioinformatics analyses revealed that the more severe brain injuries were associated with a greater number of miRNAs involved in brain related functions. The evaluation of serum miRNA may help to identify the severity of brain injury and the risk of developing adverse effects after TBI.
-
In mice there are clear individual differences in the development of behavioral sensitization to ethanol, a progressive potentiation of its psychomotor stimulant effect. Variability in the behavioral responses to ethanol has been associated with alcohol preference. Here we investigated if the functional hyperresponsiveness of D1 receptors observed in ethanol sensitized mice leads to an increased activation of DARPP-32, a central regulatory protein in medium spiny neurons, in the nucleus accumbens - a brain region known to play a role in drug reinforcement. ⋯ D1 receptor activation induced higher phospho-Thr34-DARPP-32 expression in sensitized mice than in non-sensitized or saline. The functionally hyperresponsiveness of D1 receptors in the nucleus accumbens is associated with an increased phospho-Thr34-DARPP-32 expression after D1 receptor activation. These data suggest that an enduring increase in the sensitivity of the dopamine D1 receptor intracellular pathway sensitivity represents a neurobiological correlate associated with the development of locomotor sensitization to ethanol.