Plos One
-
Clinical deterioration (ICU transfer and cardiac arrest) occurs during approximately 5-10% of hospital admissions. Existing prediction models have a high false positive rate, leading to multiple false alarms and alarm fatigue. We used routine vital signs and laboratory values obtained from the electronic medical record (EMR) along with a machine learning algorithm called a neural network to develop a prediction model that would increase the predictive accuracy and decrease false alarm rates. ⋯ We developed and tested a neural network-based prediction model for clinical deterioration in patients hospitalized in the hematologic malignancy unit. Our neural network model outperformed an existing model, substantially increasing the positive predictive value, allowing the clinician to be confident in the alarm raised. This system can be readily implemented in a real-time fashion in existing EMR systems.
-
Observational Study
Increased Plasma Levels of Heparin-Binding Protein on Admission to Intensive Care Are Associated with Respiratory and Circulatory Failure.
Heparin-binding protein (HBP) is released by granulocytes and has been shown to increase vascular permeability in experimental investigations. Increased vascular permeability in the lungs can lead to fluid accumulation in alveoli and respiratory failure. A generalized increase in vascular permeability leads to loss of circulating blood volume and circulatory failure. We hypothesized that plasma concentrations of HBP on admission to the intensive care unit (ICU) would be associated with decreased oxygenation or circulatory failure. ⋯ A high concentration of HBP in plasma on admission to the ICU is associated with respiratory and circulatory failure later during the ICU care period. It is also associated with increased 30-day mortality. Despite being an interesting biomarker for the composite ICU population it's predictive value at the individual patient level is low.
-
Historical Article
Trends in Continuous Deep Sedation until Death between 2007 and 2013: A Repeated Nationwide Survey.
Continuous deep sedation until death is a highly debated medical practice, particularly regarding its potential to hasten death and its proper use in end-of-life care. A thorough analysis of important trends in this practice is needed to identify potentially problematic developments. This study aims to examine trends in the prevalence and practice characteristics of continuous deep sedation until death in Flanders, Belgium between 2007 and 2013, and to study variation on physicians' degree of palliative training. ⋯ Worldwide, this study is the first to show a decrease in the prevalence of continuous deep sedation. Despite positive changes in performance and decision-making towards more compliance with due care requirements, there is still room for improvement in the use of recommended drugs and in the involvement of patients and relatives in the decision-making process.
-
Extracorporeal membrane oxygenation (ECMO) is increasingly being applied as life support for acute respiratory distress syndrome (ARDS) patients. However, the outcomes of this procedure have not yet been characterized in severe ARDS patients. The aim of this study was to evaluate the outcomes of severe ARDS patients supported with ECMO and to identify potential predictors of mortality in these patients. ⋯ Of the identified pre-ECMO factors, advanced age, a long duration of ventilation before ECMO, a higher Acute Physiology and Chronic Health Evaluation II (APACHE II) score, underlying lung disease, and pulmonary barotrauma prior to ECMO were associated with unsuccessful weaning from ECMO. Furthermore, multiple logistic regression analysis indicated that both barotrauma pre-ECMO and underlying lung disease were independent predictors of hospital mortality. In conclusion, for severe ARDS patients treated with ECMO, barotrauma prior to ECMO and underlying lung disease may be major predictors of ARDS prognosis based on multivariate analysis.
-
Mechanical ventilation (MV) is a life-saving intervention for patients in respiratory failure. However, prolonged MV causes the rapid development of diaphragm muscle atrophy, and diaphragmatic weakness may contribute to difficult weaning from MV. Therefore, developing a therapeutic countermeasure to protect against MV-induced diaphragmatic atrophy is important. ⋯ However, our findings reveal that AZ treatment did not prevent the MV-induced increase in mitochondrial ROS emission or protease activation in the diaphragm. Importantly, AZ treatment did not prevent MV-induced diaphragm fiber atrophy. Thus, pharmacological inhibition of the RyR1 in diaphragm muscle fibers is not sufficient to prevent MV-induced diaphragm atrophy.