Plos One
-
Estimating multimorbidity (presence of two or more chronic conditions) using administrative data is becoming increasingly common. We investigated (1) the concordance of identification of chronic conditions and multimorbidity using self-report survey and administrative datasets; (2) characteristics of people with multimorbidity ascertained using different data sources; and (3) whether the same individuals are classified as multimorbid using different data sources. ⋯ Different individuals, with different combinations of conditions, are identified as multimorbid when different data sources are used. As such, caution should be applied when ascertaining morbidity from a single data source as the agreement between self-report and administrative data is generally poor. Future multimorbidity research exploring specific disease combinations and clusters of diseases that commonly co-occur, rather than a simple disease count, is likely to provide more useful insights into the complex care needs of individuals with multiple chronic conditions.
-
To reduce the high risk of radiation toxicity and enhance the quality of life of patients with non-small cell lung cancer (NSCLC), we quantified the metabolic tumor volumes (MTVs) from baseline to the late-course of radiotherapy (RT) by fluorodeoxyglucose positron emission tomography computerized tomography (FDG PET-CT) and discussed the potential benefit of late-course adaptive plans rather than original plans by dose volume histogram (DVH) comparisons. Seventeen patients with stage II-III NSCLC who were treated with definitive conventionally fractionated RT were eligible for this prospective study. FDG PET-CT scans were acquired within 1 week before RT (pre-RT) and at approximately two-thirds of the total dose during-RT (approximately 40 Gy). ⋯ The composite plan of the original plan at 40 Gy plus the adaptive plan at 26 Gy resulted in better DVHs for all the organs at risk that were evaluated compared to the original plan at 66 Gy (p<0.05), including V5, V10, V15, V20, V25, V30 and the mean dose of total lung, V10, V20, V30, V40, V50, V60 and the mean dose of heart, V35, V40, V50, V55, V60, the maximum dose and mean dose of the esophagus, and the maximum dose of the spinal-cord. PET-MTVs were reduced significantly at the time of approximately 40 Gy during-RT. Late course adaptive radiotherapy may be an effective way to reduce the dose volume to the organs at risk, thus reducing radiation toxicity in patients with NSCLC.
-
Injury to the cervical spinal cord results in bilateral deficits in arm/hand function reducing functional independence and quality of life. To date little research has been undertaken to investigate control strategies of arm/hand movements following cervical spinal cord injury (cSCI). This study aimed to investigate unimanual and bimanual coordination in patients with acute cSCI using 3D kinematic analysis as they performed naturalistic reach to grasp actions with one hand, or with both hands together (symmetrical task), and compare this to the movement patterns of uninjured younger and older adults. ⋯ Overall, this study suggests that after cSCI a level of bimanual coordination is retained. While there seems to be a greater reliance on feedback to produce both the reach to grasp, we observed minimal disruption of the more impaired limb on the less impaired limb. This suggests that bimanual movements should be integrated into therapy.
-
The aim of this study was to assess the accuracy of a standardized arterial input function (SAIF) for positron emission tomography 18F-FDG studies in mice. In particular, we tested whether the same SAIF could be applied to populations of mice whose fasting conditions differed. ⋯ Although SAIF allows the estimation of the 18F-FDG mice input function with negligible bias and independently from the fasting state, errors in individual mice (as high as 30-50%) cause an important variability. Alternative techniques, such as image-derived input function, might be a better option for mice PET studies.
-
To explore the different influences of walking, running and stair activity on knee articular cartilage with T1 rho and T2 mapping sequences. ⋯ T1 rho and T2 mapping sequences can quantitatively reflect the different influences of physiological activities on knee articular cartilage. Fluid shifts, collagen fiber deformation, spatial heterogeneity, inherent differences in material properties and tissue stiffness have close relationship with cartilage loading characteristics.