Plos One
-
The aim of this study was to evaluate the effect of mild hypothermia on the coagulation-fibrinolysis system and physiological anticoagulants after cardiopulmonary resuscitation (CPR). A total of 20 male Wuzhishan miniature pigs underwent 8 min of untreated ventricular fibrillation and CPR. Of these, 16 were successfully resuscitated and were randomized into the mild hypothermia group (MH, n = 8) or the control normothermia group (CN, n = 8). ⋯ Thus, our findings indicate that mild hypothermia exerted an anticoagulant effect during cooling, which may have inhibitory effects on microthrombus formation. Furthermore, mild hypothermia inhibited fibrinolysis and platelet activation during cooling and attenuated blood coagulation impairment after rewarming. Slow rewarming had no obvious adverse effects on blood coagulation.
-
Earlier studies have shown considerable intersubject synchronization of brain activity when subjects watch the same movie or listen to the same story. Here we investigated the across-subjects similarity of brain responses to speech and non-speech sounds in a continuous audio drama designed for blind people. Thirteen healthy adults listened for ∼19 min to the audio drama while their brain activity was measured with 3 T functional magnetic resonance imaging (fMRI). ⋯ In areas of low ISC four ICs that were defined intrinsic fluctuated similarly as the time-courses of either the speech-sound-related or all-sounds-related extrinsic ICs. These ICs included the superior temporal gyrus, the anterior insula, and the frontal, parietal and midline occipital cortices. Taken together, substantial intersubject synchronization of cortical activity was observed in subjects listening to an audio drama, with results suggesting that speech is processed in two separate networks, one dedicated to the processing of speech sounds and the other to both speech and non-speech sounds.
-
Guanylate Cyclase C (GC-C; Gucy2c) is a transmembrane receptor expressed in intestinal epithelial cells. Activation of GC-C by its secreted ligand guanylin stimulates intestinal fluid secretion. Familial mutations in GC-C cause chronic diarrheal disease or constipation and are associated with intestinal inflammation and infection. Here, we investigated the impact of GC-C activity on mucosal immune responses. ⋯ The GC-C signaling pathway blunts colonic mucosal inflammation that is initiated by systemic cytokine burst or loss of mucosal immune cell immunosuppression. These data as well as the apparent intestinal inflammation in human GC-C mutant kindred underscore the importance of GC-C in regulating the response to injury and inflammation within the gut.
-
Mitogen-activated protein kinase phosphatase 1 (MKP-1) represses MAPK-driven signalling and plays an important anti-inflammatory role in asthma and airway remodelling. Although MKP-1 is corticosteroid-responsive and increased by cAMP-mediated signalling, the upregulation of this critical anti-inflammatory protein by long-acting β2-agonists and clinically-used corticosteroids has been incompletely examined to date. To address this, we investigated MKP-1 gene expression and protein upregulation induced by two long-acting β2-agonists (salmeterol and formoterol), alone or in combination with the corticosteroid fluticasone propionate (abbreviated as fluticasone) in primary human airway smooth muscle (ASM) cells in vitro. β2-agonists increased MKP-1 protein in a rapid but transient manner, while fluticasone induced sustained upregulation. ⋯ Nevertheless, when added in combination with fluticasone, β2-agonists significantly repressed IL-6 secretion induced by tumour necrosis factor α (TNFα). Conversely, as IL-8 is not cAMP-responsive, β2-agonists significantly inhibited TNFα-induced IL-8 in combination with fluticasone, where fluticasone alone was without repressive effect. In summary, long-acting β2-agonists increase fluticasone-induced MKP-1 in ASM cells and repress synthetic function of this immunomodulatory airway cell type.
-
Clinical Trial
Identification of novel biomarkers for sepsis prognosis via urinary proteomic analysis using iTRAQ labeling and 2D-LC-MS/MS.
Sepsis is the major cause of death for critically ill patients. Recent progress in proteomics permits a thorough characterization of the mechanisms associated with critical illness. The purpose of this study was to screen potential biomarkers for early prognostic assessment of patients with sepsis. ⋯ This study provides the proteomic analysis of urine to identify prognostic biomarkers of sepsis. The seven identified proteins provide insight into the mechanism of sepsis. Low urinary LAMP-1 levels may be useful for early prognostic assessment of sepsis.