Plos One
-
Important pain transducers of noxious stimuli are small- and medium-diameter sensory neurons that express transient receptor vanilloid-1 (TRPV1) channels and/or adenosine triphosphate (ATP)-gated P2X3 receptors whose activity is upregulated by endogenous neuropeptides in acute and chronic pain models. Little is known about the role of endogenous modulators in restraining the expression and function of TRPV1 and P2X3 receptors. In dorsal root ganglia, evidence supports the involvement of the natriuretic peptide system in the modulation of nociceptive transmission especially via the B-type natriuretic peptide (BNP) that activates the natriuretic peptide receptor-A (NPR-A) to downregulate sensory neuron excitability. ⋯ Nonetheless, 24 h application of BNP depressed TRPV1 mediated currents (an effect blocked by the NPR-A antagonist anantin) without changing responses to α,β-meATP or GABA. Anantin alone decreased basal cGMP production and enhanced control α,β-meATP-evoked responses, implying constitutive regulation of P2X3 receptors by ambient BNP. These data suggest a slow modulatory action by BNP on TRPV1 and P2X3 receptors outlining the role of this peptide as a negative regulator of trigeminal sensory neuron excitability to nociceptive stimuli.
-
Optic neuropathy including glaucoma is one of the leading causes of irreversible vision loss, and there are currently no effective therapies. The hallmark of pathophysiology of optic neuropathy is oxidative stress and apoptotic death of retinal ganglion cells (RGCs), a population of neurons in the central nervous system with their soma in the inner retina and axons in the optic nerve. We here tested that an anti-apoptotic protein stanniocalcin-1 (STC-1) can prevent loss of RGCs in the rat retina with optic nerve transection (ONT) and in cultures of RGC-5 cells with CoCl2 injury. ⋯ In cultures, treatment with STC-1 dose-dependently increased cell viability, and decreased apoptosis and levels of reactive oxygen species in RGC-5 cells that were exposed to CoCl2. The expression of HIF-1α that was up-regulated by injury was significantly suppressed in the retina and in RGC-5 cells by STC-1 treatment. The results suggested that intravitreal injection of STC-1 might be a useful therapy for optic nerve diseases in which RGCs undergo apoptosis through oxidative stress.
-
Mutations in KRAS oncogene are recognized biomarkers that predict lack of response to anti- epidermal growth factor receptor (EGFR) antibody therapies. However, some patients with KRAS wild-type tumors still do not respond, so other downstream mutations in BRAF, PIK3CA and NRAS should be investigated. Herein we used direct sequencing to analyze mutation status for 676 patients in KRAS (codons 12, 13 and 61), BRAF (exon 11 and exon 15), PIK3CA (exon 9 and exon 20) and NRAS (codons12, 13 and 61). ⋯ Female patients and older group harbored a higher KRAS mutation (P = 0.018 and P = 0.031, respectively); BRAF (V600E) mutation showed a higher frequency in colon cancer and poor differentiation tumors (P = 0.020 and P = 0.030, respectively); proximal tumors appeared a higher PIK3CA mutation (P<0.001) and distant metastatic tumors shared a higher NRAS mutation (P = 0.010). However, in this study no significant result was found between OS and gene mutation in mCRC group. To our knowledge, the first large-scale retrospective study on comprehensive genetic profile which associated with anti-EGFR MoAbs treatment selection in East Asian CRC population, appeared a specific genotype distribution picture, and the results provided a better understanding between clinicopathological characteristics and gene mutations in CRC patients.
-
Most perceived parameters of sound (e.g. pitch, duration, timbre) can also be imagined in the absence of sound. These parameters are imagined more veridically by expert musicians than non-experts. Evidence for whether loudness is imagined, however, is conflicting. ⋯ Similarity between each participant's imagined and listening loudness profiles and reference recording intensity profiles was assessed using time series analysis and dynamic time warping. The results suggest a widespread ability to imagine the loudness of familiar music. The veridicality of imagined loudness tended to be greatest for the expert musicians, supporting the predicted relationship between musical expertise and musical imagery ability.
-
This study investigated the reversible effects of pulsed radiofrequency (PRF) treatment at 42 °C on the ultrastructural and biological changes in nerve and collagen fibers in the progression of neuropathic pain after rat sciatic nerve injury. Assessments of morphological changes in the extracellular matrices by atomic force microscopy and hematoxylin-eosin, Masson's trichrome and picrosirius-red staining as well as the expressions of two fibril-forming collagens, types-I and -III, and two inflammatory cytokines, TNF-α and IL-6, were evaluated on day 30 after RF exposure. There were four groups for different RF thermal treatments: no treatment, no current, PRF, and continuous RF (CRF). ⋯ The PRF treatment led to excellent performance and high expandability compared to CRF, with effects including slight damage and swelling of myelinated axons, a slightly decreased amount of collagen fibers, swelling of collagen fibril diameters, decreased immunoreactivity of collagen types-I and -III, presence of newly synthesized collagen, and recovery of inflammatory protein immunoreactivity. These evidence-based findings suggest that PRF-based pain relief is responsible for the temporary blockage of nerve signals as well as the preferential destruction of pain-related principal sensory fibers like the Aδ and C fibers. This suggestion can be supported by the interaction between the PRF-induced electromagnetic field and cell membranes; therefore, PRF treatment provides pain relief while allowing retention of some tactile sensation.