Plos One
-
Neutrophil extracellular traps (NETs) have been implicated in the pathogenesis of systemic Lupus erythematosus (SLE), since netting neutrophils release potentially immunogenic autoantigens including histones, LL37, human neutrophil peptide (HNP), and self-DNA. In turn, these NETs activate plasmacytoid dendritic cells resulting in aggravation of inflammation and disease. How suppression of NET formation can be targeted for treatment has not been reported yet. ⋯ Furthermore, NET release by healthy neutrophils exposed to SLE plasma is inhibited by SIRL-1 ligation. Thus, SIRL-1 engagement can dampen spontaneous and anti-neutrophil antibody-induced NET formation in SLE, likely by suppressing NAPDH oxidase and MEK-ERK activity. Together, these findings reveal a regulatory role for SIRL-1 in NET formation, potentially providing a novel therapeutic target to break the pathogenic loop in SLE.
-
The aim of this study was to determine the effect of gestational diabetes mellitus (GDM) on fetal insulin resistance or β-cell function in Chinese pregnant women with GDM. ⋯ Fetal insulin resistance was higher in Chinese pregnant women with GDM than control subjects, and correlated with maternal insulin resistance.
-
Nasal nitric oxide (nNO) measurement is an established first line test in the work-up for primary ciliary dyskinesia (PCD). Tidal breathing nNO (TB-nNO) measurements require minimal cooperation and are potentially useful even in young children. Hand-held NO devices are becoming increasingly widespread for asthma management. Therefore, we chose to assess whether hand-held TB-nNO measurements reliably discriminate between PCD, and Healthy Subjects (HS) and included Cystic Fibrosis (CF) patients as a disease control group known to have intermediate nNO levels. ⋯ Hand-held TB-nNO discriminates significantly between PCD, CF and HS and shows promising potential as a widespread targeted case-finding tool for PCD, although further studies are warranted before implementation.
-
Parietal networks are hypothesised to play a central role in the cortical information synthesis that supports conscious experience and behavior. Significant reductions in parietal level functional connectivity have been shown to occur during general anesthesia with propofol and a range of other GABAergic general anesthetic agents. Using two analysis approaches (1) a graph theoretic analysis based on surrogate-corrected zero-lag correlations of scalp EEG, and (2) a global coherence analysis based on the EEG cross-spectrum, we reveal that sedation with the NMDA receptor antagonist nitrous oxide (N2O), an agent that has quite different electroencephalographic effects compared to the inductive general anesthetics, also causes significant alterations in parietal level functional networks, as well as changes in full brain and frontal level networks. ⋯ In contrast reductions in frontal network functional connectivity were optimally discriminated using a common-reference derivation (reductions on the order of 10%), indicating that the NMDA antagonist N2O induces spatially coherent and widespread perturbations in frontal activity. Our findings not only give important weight to the idea of agent invariant final network changes underlying drug-induced reductions in consciousness, but also provide significant impetus for the application and development of multiscale functional analyses to systematically characterise the network level cortical effects of NMDA receptor related hypofunction. Future work at the source space level will be needed to verify the consistency between cortical network changes seen at the source level and those presented here at the EEG sensor space level.
-
The efficacy of spinal cord stimulators is dependent on the ability of the device to functionally activate targeted structures within the spinal cord, while avoiding activation of near-by non-targeted structures. In theory, these objectives can best be achieved by delivering electrical stimuli directly to the surface of the spinal cord. The current experiments were performed to study the influence of different stimulating electrode positions on patterns of spinal cord electrophysiological activation. ⋯ A clear relationship was observed between voltage and electrode position, and the magnitude of high gamma-band oscillations. Direct stimulation of the dorsal column contralateral to the grid required the lowest voltage to evoke brain responses to spinal cord stimulation. Given the lower voltage thresholds associated with direct stimulation of the dorsal column, and its possible impact on the therapeutic window, this intradural modality may have particular clinical advantages over standard epidural techniques now in routine use.