Plos One
-
Stress affects immunity, but the mechanism is not known. Neurotensin (NT) and corticotropin-releasing hormone (CRH) are secreted under stress in various tissues, and have immunomodulatory actions. We had previously shown that NT augments the ability of CRH to increase mast cell-dependent skin vascular permeability in rodents. ⋯ NT induced expression of CRH receptor-1 (CRHR-1), as shown by Western blot and FACS analysis. Interestingly, CRH also induced NTR gene and protein expression. These results indicate unique interactions among NT, CRH, and mast cells that may contribute to auto-immune and inflammatory diseases that worsen with stress.
-
In Madagascar, very little is known about the etiology and prevalence of acute respiratory infections (ARIs) in a rural tropical area. Recent data are needed to determine the viral and atypical bacterial etiologies in children with defined clinical manifestations of ARIs. ⋯ This study describes for the first time the etiology of respiratory infections in febrile children under 5 years in a malaria rural area of Madagascar and highlights the role of respiratory viruses in a well clinically defined population of ARIs.
-
The state of a neural assembly preceding an incoming stimulus is assumed to modulate the processing of subsequently presented stimuli. The nature of this state can differ with respect to the frequency of ongoing oscillatory activity. Oscillatory brain activity of specific frequency range such as alpha (8-12 Hz) and gamma (above 30 Hz) band oscillations are hypothesized to play a functional role in cognitive processing. ⋯ An improvement of visual processing was only observed for enhanced gamma band activity. Both experiments demonstrate the specific functional role of prestimulus gamma band oscillations for perceptual processing. We propose that the BCI method permits the selective modulation of oscillatory activity and the direct assessment of behavioral consequences to test for functional dissociations of different oscillatory brain states.
-
Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC) phosphorylation mediated by MLC kinase (MLCK) is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. ⋯ The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury.
-
Although it has been hypothesized that muscle metabolism and fatigability could be impaired in sickle cell patients, no study has addressed this issue. ⋯ Sickle cell patients have normal resting muscle oxygen consumption and fatigability despite hemorheological alterations and, for SS patients only, reduced muscle microvascular oxygenation and increased microvascular blood flow. Two alternative mechanisms can be proposed for SS patients: 1) the increased muscle microvascular blood flow is a way to compensate for the lower muscle microvascular oxygenation to maintain muscle oxygen consumption to normal values or 2) the reduced microvascular oxygenation coupled with a normal resting muscle oxygen consumption could indicate that there is slight hypoxia within the muscle which is not sufficient to limit mitochondrial respiration but increases muscle microvascular blood flow.