Plos One
-
Ischemia and reperfusion injury (I/R) of neuronal structures and organs is associated with increased morbidity and mortality due to neuronal cell death. We hypothesized that inhalation of carbon monoxide (CO) after I/R injury ('postconditioning') would protect retinal ganglion cells (RGC). ⋯ Inhaled CO, administered after retinal ischemic injury, protects RGC through its strong anti-apoptotic and anti-inflammatory effects.
-
While there are a variety of identifiable causes of constipation, even idiopathic constipation has different possible mechanisms. Sennosides, the main laxative constituents of Daio, an ancient Kampo medicine, are prodrugs that are converted to an active principle, rheinanthrone, by intestinal microbiota. In this study, we aimed to determine the sennoside hydrolysis ability of lactic acid bacterial strains and bifidobacteria in the intestine and to investigate their effect on intestinal peristalsis in mice. ⋯ We demonstrated that intestinal peristalsis was promoted by rheinanthrone produced by hydrolysis of sennoside by strain LKM512 and LKM10070.
-
In vitro studies have well established the neuroprotective action of the noble gas argon. However, only limited data from in vivo models are available, and particularly whether postexcitotoxic or postischemic argon can provide neuroprotection in vivo still remains to be demonstrated. Here, we investigated the possible neuroprotective effect of postexcitotoxic-postischemic argon both ex vivo in acute brain slices subjected to ischemia in the form of oxygen and glucose deprivation (OGD), and in vivo in rats subjected to an intrastriatal injection of N-methyl-D-aspartate (NMDA) or to the occlusion of middle-cerebral artery (MCAO). ⋯ These results extend previous data on the neuroprotective action of argon. Particularly, taken together with previous in vivo data that have shown that intraischemic argon has neuroprotective action at both the cortical and subcortical level, our findings on postischemic argon suggest that this noble gas could be administered during but not after ischemia, i.e. before but not after reperfusion has occurred, in order to provide cortical neuroprotection and to avoid increasing subcortical brain damage. Also, the effects of argon are discussed as regards to the oxygen-like chemical, pharmacological, and physical properties of argon.
-
Sodium salicylate (NaSal), an aspirin metabolite, can cause tinnitus in animals and human subjects. To explore neural mechanisms underlying salicylate-induced tinnitus, we examined effects of NaSal on neural activities of the medial geniculate body (MGB), an auditory thalamic nucleus that provides the primary and immediate inputs to the auditory cortex, by using the whole-cell patch-clamp recording technique in MGB slices. ⋯ NaSal also reduced the excitatory and inhibitory postsynaptic response in the MGB evoked by stimulating the brachium of the inferior colliculus. Our results demonstrate that NaSal alters neuronal intrinsic properties and reduces the synaptic transmission of the MGB, which may cause abnormal thalamic outputs to the auditory cortex and contribute to NaSal-induced tinnitus.
-
Organ-specific composition of extracellular matrix proteins (ECM) is a determinant of metastatic host organ involvement. The chemokine CXCL12 and its receptor CXCR4 play important roles in the colonization of human breast cancer cells to their metastatic target organs. In this study, we investigated the effects of chemokine stimulation on adhesion and migration of different human breast cancer cell lines in vivo and in vitro with particular focus on the liver as a major metastatic site in breast cancer. ⋯ Chemokine-induced extravasation of breast cancer cells along specific ECM components appears to be an important regulator but not a rate-limiting factor of their metastatic organ colonization.