Plos One
-
Intellectual disability (ID) affects 2-3% of the population and may occur with or without multiple congenital anomalies (MCA) or other medical conditions. Established genetic syndromes and visible chromosome abnormalities account for a substantial percentage of ID diagnoses, although for approximately 50% the molecular etiology is unknown. Individuals with features suggestive of various syndromes but lacking their associated genetic anomalies pose a formidable clinical challenge. With the advent of microarray techniques, submicroscopic genome alterations not associated with known syndromes are emerging as a significant cause of ID and MCA. ⋯ Combining SNP microarray analyses and qPCR allowed us to clone and sequence 21 deletion breakpoints in individuals with atypical deletions in the WS region and/or ID or MCA. Comparison of these breakpoints to databases of genomic variation revealed that 52% occurred in regions harboring structural variants in the general population. For two probands the genomic alterations were flanked by segmental duplications, which frequently mediate recurrent genome rearrangements; these may represent new genomic disorders. While SNP arrays and related technologies can identify potentially pathogenic deletions and duplications, obtaining sequence information from the breakpoints frequently provides additional information.
-
Antisense oligonucleotide-induced exon skipping is a promising approach for treatment of Duchenne muscular dystrophy (DMD). We have systemically administered an antisense phosphorodiamidate morpholino oligomer (PMO) targeting dystrophin exons 6 and 8 to a dog with canine X-linked muscular dystrophy in Japan (CXMD(J)) lacking exon 7 and achieved recovery of dystrophin in skeletal muscle. To date, however, antisense chemical compounds used in DMD animal models have not been directly applied to a DMD patient having the same type of exon deletion. We recently identified a DMD patient with an exon 7 deletion and tried direct translation of the antisense PMO used in dog models to the DMD patient's cells. ⋯ Antisense PMOs, the effectiveness of which has been demonstrated in a dog model, achieved multi-exon skipping of dystrophin gene on the FACS-aided MyoD-transduced fibroblasts from an exon 7-deleted DMD patient, suggesting the feasibility of systemic multi-exon skipping in humans.
-
The World Health Organization recommends insecticidal bednets and intermittent preventive treatment to reduce malaria in pregnancy. Longitudinal data of malaria prevalence and pregnancy outcomes are valuable in gauging the impact of these antimalarial interventions. ⋯ Increased bednet coverage explains changes in parasitemia and birth weight among pregnant women better than sulfadoxine-pyrimethamine use. High bed net coverage, and sulfadoxine-pyrimethamine resistance, may be contributing to its apparent loss of effectiveness.
-
During this pilot clinical study, patients scheduled for elective tourniquet-applied upper limb orthopaedic surgery were recruited to investigate the effects of surgery on various biological markers (n = 10 patients). ⋯ Conventionally, patients undergoing orthopaedic surgery have been monitored in the peri-operative period by means of CRP, which is a non-specific marker of inflammation. This test cannot differentiate between inflammation due to current or pre-existing disease processes and the development of ischaemia-reperfusion injury surgery. The findings from this study suggest that markers such as CD11b, protein C and H2O2 may provide alternative ways of assessing leukocyte and coagulation activation peri-operatively. It is proposed that by allowing orthopaedic surgeons access to laboratory markers such as CD11b, protein C and H2O2, an accurate assessment of the extent of inflammation due to surgery per se could be made.
-
In the course of modern daily life, individuals are exposed to numerous sources of electromagnetic radiation that are not present in the natural environment. The strength of the electromagnetic fields from sources such as hairdryers, computer display units and other electrical devices is modest. However, in many home and office environments, individuals can experience perpetual exposure to an "electromagnetic smog", with occasional peaks of relatively high electromagnetic field intensity. ⋯ Our data indicate that 900 MHz GSM fields do not affect either basal Ca2+ homeostasis or provoked Ca2+ signals. Even at the highest field strengths applied, which exceed typical phone exposure levels, we did not observe any changes in cellular Ca2+ signals. We conclude that under the conditions employed in our experiments, and using a highly-sensitive assay, we could not detect any consequence of RF exposure.