Progress in brain research
-
In normal life, activity-dependent plasticity occurs in the spinal cord as well as in the brain. Like CNS plasticity elsewhere, this spinal cord plasticity can occur at many neuronal and synaptic sites and by a variety of mechanisms. Spinal cord plasticity is prominent in postnatal development and contributes to acquisition of standard behaviors such as locomotion and rapid withdrawal from pain. ⋯ This complexity is necessary, to preserve the full roster of behaviors, and is also inevitable, due to the ubiquity of activity-dependent plasticity in the CNS. Careful investigation of spinal cord plasticity is essential for understanding motor skills; and, because of the relative simplicity and accessibility of the spinal cord, is a logical and convenient starting point for exploring skill acquisition. Appropriate induction and guidance of activity-dependent plasticity in the spinal cord is likely to be a key part of the realization of effective new rehabilitation methods for spinal cord injuries, cerebral palsy, and other chronic motor disorders.
-
Review
Functional genomics and proteomics in the clinical neurosciences: data mining and bioinformatics.
The goal of this chapter is to introduce some of the available computational methods for expression analysis. Genomic and proteomic experimental techniques are briefly discussed to help the reader understand these methods and results better in context with the biological significance. Furthermore, a case study is presented that will illustrate the use of these analytical methods to extract significant biomarkers from high-throughput microarray data. ⋯ The validation process may be slow; yet, the overall biomarker discovery process is significantly accelerated due to initial feature ranking and data reduction steps. Information obtained from the validation process may also be used to refine data analysis procedures for future iteration. Biomarker validation may be performed in a number of ways - bench-side in traditional labs, web-based electronic resources such as gene ontology and literature databases, and clinical trials.
-
A central question in visual neuroscience is what circuits generate the responses of neurons in the primary visual cortex (V1). V1 neurons respond best to oriented stimuli of optimal size within their receptive field (RF) center. This size tuning is contrast dependent, i.e. a neuron's optimal stimulus size measured at high contrast (the high-contrast summation RF, or hsRF) is smaller than when measured using low-contrast stimuli (the low-contrast summation RF, or lsRF). ⋯ We review data showing that a subset of FB connections terminate in a patchy fashion in V1, and show modular and orientation specificity, consistent with their proposed role in orientation-specific center-surround interactions. We propose specific mechanisms by which each connection type contributes to the RF center and surround of V1 neurons, and implement these hypotheses into a recurrent network model. We show physiological data in support of the model's predictions, revealing that modulation from the "far" surround is not always suppressive, but can be facilitatory under specific stimulus conditions.
-
Review
Brain plasticity and functional losses in the aged: scientific bases for a novel intervention.
Aging is associated with progressive losses in function across multiple systems, including sensation, cognition, memory, motor control, and affect. The traditional view has been that functional decline in aging is unavoidable because it is a direct consequence of brain machinery wearing down over time. In recent years, an alternative perspective has emerged, which elaborates on this traditional view of age-related functional decline. ⋯ We found that older adults could learn the training program quickly, and could use it entirely unsupervised for the majority of the time required. Pre- and posttesting documented a significant improvement in memory within the training group (effect size 0.41, p<0.0005), with no significant within-group changes in a time-matched computer using active control group, or in a no-contact control group. Thus, a brain-plasticity-based intervention targeting normal age-related cognitive decline may potentially offer benefit to a broad population of older adults.
-
In order to study cerebral activity related to preparation and execution of movement, evoked and induced brain electrical activities were compared to each other and to fMRI results in voluntary self-paced movements. Also, the event-related desynchronization and synchronization (ERD/ERS) were studied in complex movements with various degrees of cognitive load. The Bereitschaftspotential (BP) and alpha (8-12 Hz) and beta (16-24 Hz) ERD/ERS rhythms in self-paced simple movements were analyzed in 14 epilepsy surgery candidates. ⋯ Some sites were only active in the task with the increased demand on executive functions. In the temporal neocortex only, the oscillatory, but not the evoked, activity was recorded in the self-paced movement. The temporal appearance of changes of oscillatory activities in the self-paced movement task as well as in the cued movement task with an increased load of executive functions raises the interesting question of the role of this region in cognitive-movement information processing.