Progress in brain research
-
Pathological neural activity in a variety of neurological disorders could be treated by directing plasticity to specifically renormalize aberrant neural circuits, thereby restoring normal function. Brief bursts of acetylcholine and norepinephrine can enhance the neural plasticity associated with coincident events. Vagus nerve stimulation (VNS) represents a safe and effective means to trigger the release of these neuromodulators with a high degree of temporal control. ⋯ Based on the capacity to drive specific changes in neural circuitry, VNS paired with experience has been successful in effectively ameliorating animal models of chronic tinnitus, stroke, and posttraumatic stress disorder. Targeted plasticity therapy utilizing VNS is currently being translated to humans to treat chronic tinnitus and improve motor recovery after stroke. This chapter will discuss the current progress of VNS paired with experience to drive specific plasticity to treat these neurological disorders and will evaluate additional future applications of targeted plasticity therapy.
-
The developing normal brain shows a remarkable capacity for plastic change in response to a wide range of experiences including sensory and motor experience, psychoactive drugs, parent-child relationships, peer relationships, stress, gonadal hormones, intestinal flora, diet, and injury. The effects of injury vary with the precise age-at-injury, with the general result being that injury during cell migration and neuronal maturation has a poor functional outcome, whereas similar injury during synaptogenesis has a far better outcome. A variety of factors influence functional outcome including the nature of the behavior in question and the age at behavioral assessment as well as pre- and postinjury experiences. Here, we review the phases of brain development, how factors influence brain, and behavioral development in both the normal and perturbed brain, and propose mechanisms that may underlie these effects.
-
The purpose of this review is to summarize how our perspective about the neuroscience of brain plasticity, informed by perceptual, experimental, and cognitive psychology, has led to the designs of a new class of therapeutic tools developed to drive functionally distorted and damaged brains in corrective directions. How does neuroplasticity science inform us about optimal therapeutic program designs? How do we apply that science, using modern technology, to drive neurological changes that address both the neurobehavioral distortions and the resulting behavioral deficits that are expressed in specific neurological and psychiatric disorders? By what strategies can we achieve the strongest and most complete rehabilitative corrections? These are questions that we have extensively explored in our efforts to establish new medical applications of neuroplasticity-based therapeutics. Here, we summarize the state of this rapidly emerging area of translational neuroscience, beginning with an explanation of the scientific premises and strategies, then describing their implementation in therapeutic software to address two human illnesses: the treatment of social cognition deficits in chronic schizophrenia and in autism; and the amelioration of age-related functional decline using strategies designed to delay the onset of--and potentially prevent--Alzheimer's Disease and related causes of dementia in aging.
-
We constantly need to make decisions that can result in rewards of different amounts with different probabilities and at different timing. To characterize the neural coding of such computational factors affecting value-based decision making, we have investigated how reward information processing is influenced by parameters such as reward magnitude, probability, delay, effort, and uncertainty using either fMRI in healthy humans or intracranial recordings in patients with epilepsy. ⋯ Moreover, separate valuation systems were engaged for delay and effort costs when deciding between options. Finally, genetic variations in dopamine-related genes influenced the response of the reward system and may contribute to individual differences in reward-seeking behavior and in predisposition to neuropsychiatric disorders.
-
Emotion plays a major role in influencing our everyday cognitive and behavioral functions, including decision making. We introduce different ways in which emotions are characterized in terms of the way they influence or elicited by decision making. ⋯ We present and discuss results from a study with emotional pictures presented prior to decision making and how that influences both decision processes and postdecision experience as a function of uncertainty. We conclude with a summary of the work on emotions and decision making in the context of decision-making theories and our work on incidental emotions.