Progress in brain research
-
Calcitonin Gene-Related Peptide (CGRP) plays a pivotal role in migraine pathophysiology. Two types of CGRP function-blocking modalities, monoclonal antibodies, and small molecules (gepants), have been developed to target the CGRP ligands and CGRP receptors. ⋯ Multiple clinical trials of the CGRP monoclonal antibodies and gepants, and now some open-label long-term extension data, established their efficacy, safety, and tolerability. In this chapter, we summarize the major clinical trials, pharmacokinetic insights, safety and tolerability profiles, and real-world data (if available) of the CGRP monoclonal antibodies and gepants.
-
Spasticity is one of the main complications after the spinal cord injury (SCI). Most commonly, severe cases of spasticity are treated surgically with intrathecal baclofen therapy (ITB). Spinal cord stimulation for chronic pains (SCS) serves as an alternative for ITB. Both methods have their benefits and limitations. This study is aimed at development of a personalized SCS and ITB treatment algorithm for patients with severe cases of spasticity after SCI. ⋯ Surgical treatment of patients with severe spasticity after SCI should start with experimental spinal cord stimulation, and, in case of a positive response, be followed by SCS system implantation. Patients with positive response to the experimental stimulation exhibit a significantly prolonged response to treatment, without substantial differences from ITB patients.
-
The visual network is crucially implicated in the pathophysiology of migraine. Several lines of evidence indicate that migraine is characterized by an altered visual cortex excitability both during and between attacks. Visual symptoms, the most common clinical manifestation of migraine aura, are likely the result of cortical spreading depression originating from the extrastriate area V3A. ⋯ We will first provide an overview highlighting the direct implication of the visual network in migraine. Next, we will focus on the rationale behind using NIBS for migraine treatment, including its effects on the visual cortex, and the shortcomings of currently available evidence. Finally, we propose a broader perspective of how novel approaches, the concept of brain networks and the integration of multimodal imaging with computational modeling, can help refine current NIBS methods, with the ultimate goal of optimizing a more individualized treatment for migraine.
-
Review
Therapeutic role of melatonin in migraine prophylaxis: Is there a link between sleep and migraine?
Melatonin is a ubiquitously distributed molecule that possesses diverse functions. Melatonin plays a key role in the endogenous circadian rhythms of humans via light stimulation in the hypothalamus. In addition, melatonin has roles in the opioid system, the nitric oxide pathway, free radical scavenging, inflammation, and antinociception. ⋯ Longitudinal studies have shown that some sleep disorders and migraine show bidirectional comorbidities. Therefore, the identification and treatment of sleep disorders is important when treating migraine. Melatonin represents a promising treatment strategy for both disorders, especially when these conditions are combined.
-
Noninvasive neurostimulation methods are particularly suited for migraine treatment thanks to their most favorable adverse event profile. Among them, noninvasive vagus nerve stimulation (nVNS) has raised great hope because of the role the vagus nerve is known to play in pain modulation, inflammation and brain excitability. ⋯ Both in acute and preventive trials, nVNS was characterized by an outstanding tolerance and safety profile, like the other noninvasive neurostimulation techniques. In physiological animal and human studies, cervical nVNS was shown to generate somatosensory evoked responses, to modulate pain perception and several areas of the cerebral pain network, and to inhibit experimental cortical spreading depression, which are relevant effects for migraine therapy.