P Nutr Soc
-
The epidemiological data that directly examine whole grain v. refined grain intake in relation to weight gain are sparse. However, recently reported studies offer insight into the potential role that whole grains may play in body-weight regulation due to the effects that the components of whole grains have on hormonal factors, satiety and satiation. In both clinical trials and observational studies the intake of whole-grain foods was inversely associated with plasma biomarkers of obesity, including insulin, C-peptide and leptin concentrations. ⋯ High insulin levels may promote obesity by altering adipose tissue physiology and by enhancing appetite. The fibre content of whole grains may also affect the secretion of gut hormones, independent of glycaemic response, that may act as satiety factors. Future studies may examine whether whole grain intake is directly related to body weight, and whether the associations are primarily driven by components of the grain, including dietary fibre, bran or germ.
-
Epidemiological studies find that whole-grain intake is protective against cancer, cardiovascular disease, diabetes and obesity. Potential mechanisms for this protection are diverse since whole grains are rich in nutrients and phytochemicals. First, whole grains are concentrated sources of dietary fibre, resistant starch and oligosaccharides, carbohydrates that escape digestion in the small intestine and are fermented in the gut, producing short-chain fatty acids (SCFA). ⋯ These compounds include phytate, phyto-oestrogens such as lignan, plant stanols and sterols, and vitamins and minerals. As a consequence of the traditional models of conducting nutrition studies on isolated nutrients, few studies exist on the biological effects of increased whole-grain intake. The few whole-grain feeding studies that are available show improvements in biomarkers with whole-grain consumption, such as weight loss, blood lipid improvement and antioxidant protection.
-
Insulin resistance develops as a response to virtually all types of surgical stress. There is an increasing body of evidence that suggests that insulin resistance in surgical stress is not beneficial for outcome. A recent large study in intensive-care patients showed that aggressive treatment of insulin resistance using intravenous insulin reduced mortality and morbidity substantially. ⋯ In summary, preventing or treating insulin resistance in surgical stress influences outcome. Fasting overnight is not an optimal way to prepare patients for elective surgery. Instead, pre-operative carbohydrates have clinical benefits.
-
General anaesthesia causes hypothermia due to decreased metabolic rate and impaired thermoregulation. Many warming devices are in use to prevent heat loss, but little attention has been paid to stimulating the body's own heat generation. All nutrients raise energy expenditure, and the highest thermic effect is ascribed to amino acids and proteins, 30-40 % in the awake state. ⋯ It may reflect an increased protein turnover, as both protein breakdown and synthesis are energy-consuming processes known to generate heat. Possibly, amino acid infusion provides substrates, otherwise mobilized from the body's own tissues, needed for wound healing and immunological function. However, other cellular mechanisms may also contribute to this non-shivering thermogenesis.
-
Supplementation has many potential advantages over fortification and dietary approaches for improving micronutrient intake. Pregnant and lactating women and infants are most likely to benefit from supplementation. Recent experience with vitamin A supplementation in young children has proved to be remarkably successful. ⋯ UNICEF is employing the supplement in programmes aimed at helping to prevent low birth weight. The new supplement is likely to be more efficacious than Fe-folate supplements for both maternal and child survival and development outcomes. Successful completion of rigorous efficacy trials will be critical for creating the political support needed to achieve universal coverage.