Brain Stimul
-
Cathodal transcranial direct current stimulation (tDCS) of the right frontal cortex improves language abilities in post-stroke aphasic patients. Yet little is known about the effects of right frontal cathodal tDCS on normal language function. ⋯ The results support the notion that the after-effects of tDCS on brain function are at least in part determined by the anatomical and functional connectivity of the targeted region.
-
Transcranial magnetic stimulation (TMS) of the human primary motor hand area (M1-HAND) can produce multiple descending volleys in fast-conducting corticospinal neurons, especially so-called indirect waves (I-waves) resulting from trans-synaptic excitation. Facilitatory interaction between these I-waves can be studied non-invasively using a paired-pulse paradigm referred to as short-interval intracortical facilitation (SICF). ⋯ SICF elicited using monophasic as well as half-sine pulses is affected by current direction at clearly suprathreshold intensities. The impact of current orientation is stronger for monophasic compared with half-sine pulses. The direction-specific effect of paired-pulse TMS on the strength of early versus late SICF shows that different cortical circuits mediate early and late SICF.
-
In Parkinson's disease (PD) dyskinesias appear after long-term dopaminergic treatment. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) or the globus pallidus internus (GPi) is a well-established treatment option for both PD symptoms and complications of medication. ⋯ Stimulation of the Pf has a specific impact on dyskinesias, which is similar to that found after EPN stimulation, and which is accompanied by changes of oscillatory activity.