Brain Stimul
-
Randomized Controlled Trial Multicenter Study
rTMS with a two-coil array: Safety and efficacy for treatment resistant major depressive disorder.
Therapeutic repetitive Transcranial Magnetic Stimulation (rTMS) has emerged as a standard of care for individuals with major depressive disorder (MDD) who do not benefit from, or are unable to tolerate, antidepressant pharmacotherapy. Depth of stimulation is limited with currently approved figure-eight coils and larger coils capable of deeper penetration may be associated with loss of stimulation focality and undesired recruitment of motor cortex. A second generation 2-coil array rTMS system was designed to target converging brain pathways for potentially deeper prefrontal cortex stimulation. ⋯ The results confirmed safety and acute efficacy of the 2-coil rTMS device. Despite modest sample size, primary outcome was clinically and statistically significant, and the effect size was comparable with those reported for regulatory trials with FDA-cleared devices.
-
Previous studies indicate that transcranial direct current stimulation (tDCS) with anode over motor cortex (M1) and cathode over contralateral supraorbital region (SO) may be effective in reducing pain, but these studies are limited in number and have not focused on older adults with osteoarthritis (OA). ⋯ Although not consistent in all pain measurements, our findings demonstrate promising clinical efficacy for reduction in pain perception for older adults with knee OA.
-
Repetitive transcranial magnetic stimulation (TMS) is a non-invasive, safe, and efficacious treatment for depression. TMS has been shown to normalize abnormal functional connectivity of cortico-cortical circuits in depression and baseline functional connectivity of these circuits predicts treatment response. Less is known about the relationship between functional connectivity of frontostriatal circuits and treatment response. ⋯ In an exploratory analysis, higher functional connectivity between the left DLPFC and striatum predicted better treatment response. Our findings suggest that the antidepressant mechanism of action of TMS may require connectivity from cortex proximal to the stimulation site to the striatum.
-
Transcranial magnetic stimulation (TMS) is commonly used to measure the effects of stroke on corticomotor excitability, intracortical function, and interhemispheric interactions. The interhemispheric inhibition model posits that recovery of motor function after stroke is linked to rebalancing of asymmetric interhemispheric inhibition and corticomotor excitability. This model forms the rationale for using neuromodulation techniques to suppress unaffected motor cortex excitability, and facilitate affected motor cortex excitability. However, the evidence base for using neuromodulation techniques to promote post-stroke motor recovery is inconclusive. ⋯ The neurophysiological effects of stroke are primarily localised to the affected hemisphere, and there is no clear evidence for hyper-excitability of the unaffected hemisphere or imbalanced interhemispheric inhibition. This indicates that facilitating affected M1 excitability directly may be more beneficial than suppressing unaffected M1 excitability for promoting post-stroke recovery.
-
It is well known that transcranial direct current stimulation (tDCS) is capable of modulating corticomotor excitability. However, a source of growing concern has been the observed inter- and intra-individual variability of tDCS-responses. Recent studies have assessed whether individuals respond in a predictable manner across repeated sessions of anodal tDCS (atDCS). The findings of these investigations have been inconsistent, and their methods have some limitations (i.e. lack of sham condition or testing only one tDCS intensity). ⋯ 2 mA anodal tDCS results in consistent intra- and inter-individual increases of M1 excitability.