Brain Stimul
-
Previous research has typically focussed on the neuromodulatory effects of direct currents applied over single regions of the cortex. However, complex processes such as working memory (WM) strongly rely on activations across a wider neural network and therefore might benefit from stimulation administered over multiple cortical targets. ⋯ These results provide important initial insight into the behavioural and biological effects of stimulation over key cortical regions linked to WM and attest to the sensitivity of TMS-EEG and EEG in detecting subtle neurophysiological changes induced by HD-tDCS.
-
Randomized Controlled Trial
Less is more - Pulse width dependent therapeutic window in deep brain stimulation for essential tremor.
Shorter pulse widths than conventional pulse width settings may lead to reduction of side effects and therefore be a valuable therapeutic option for deep brain stimulation (DBS) in patients with essential tremor (ET). ⋯ VIM/PSA-DBS with short pulse width represents a promising programming option for DBS in ET as it reduces side effects while maintaining efficient tremor suppression. Furthermore, our data support the notion of pulse width dependent selective modulation of distinct fiber tracts leading to widening of the therapeutic window.
-
Randomized Controlled Trial
Short-interval and long-interval intracortical inhibition of TMS-evoked EEG potentials.
Inhibition in the human motor cortex can be probed by means of paired-pulse transcranial magnetic stimulation (ppTMS) at interstimulus intervals of 2-3 ms (short-interval intracortical inhibition, SICI) or ∼100 ms (long-interval intracortical inhibition, LICI). Conventionally, SICI and LICI are recorded as motor evoked potential (MEP) inhibition in the hand muscle. Pharmacological experiments indicate that they are mediated by GABAA and GABAB receptors, respectively. ⋯ Findings suggest a similar interaction of paired-pulse effects on TEPs irrespective of the interstimulus interval. Therefore, SICI and LICI as measured with TEPs cannot be directly derived from SICI and LICI measured with MEPs, but may offer novel insight into paired-pulse responses recorded directly from the brain rather than muscle.
-
Multicenter Study Clinical Trial
Non-motor outcomes of subthalamic stimulation in Parkinson's disease depend on location of active contacts.
Subthalamic nucleus (STN) deep brain stimulation (DBS) improves quality of life (QoL), motor, and non-motor symptoms (NMS) in Parkinson's disease (PD). Few studies have investigated the influence of the location of neurostimulation on NMS. ⋯ Our study provides evidence that more anterior, medial, and ventral STN-DBS is significantly related to more beneficial non-motor outcomes.
-
Multicenter Study
Short-term quality of life after subthalamic stimulation depends on non-motor symptoms in Parkinson's disease.
Subthalamic nucleus (STN) deep brain stimulation (DBS) improves quality of life (QoL), motor, and non-motor symptoms (NMS) in advanced Parkinson's disease (PD). However, considerable inter-individual variability has been observed for QoL outcome. ⋯ Our results provide evidence that QoL improvement after STN-DBS depends on preoperative NMS characteristics. These findings are important in the advising and selection of individuals for DBS therapy. Future studies investigating motor and non-motor PD clusters may enable stratifying QoL outcomes and help predict patients' individual prospects of benefiting from DBS.