Mbio
-
Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging coronavirus infecting humans that is associated with acute pneumonia, occasional renal failure, and a high mortality rate and is considered a threat to public health. The construction of a full-length infectious cDNA clone of the MERS-CoV genome in a bacterial artificial chromosome is reported here, providing a reverse genetics system to study the molecular biology of the virus and to develop attenuated viruses as vaccine candidates. Following transfection with the cDNA clone, infectious virus was rescued in both Vero A66 and Huh-7 cells. Recombinant MERS-CoVs (rMERS-CoVs) lacking the accessory genes 3, 4a, 4b, and 5 were successfully rescued from cDNA clones with these genes deleted. The mutant viruses presented growth kinetics similar to those of the wild-type virus, indicating that accessory genes were not essential for MERS-CoV replication in cell cultures. In contrast, an engineered mutant virus lacking the structural E protein (rMERS-CoV-ΔE) was not successfully rescued, since viral infectivity was lost at early passages. Interestingly, the rMERS-CoV-ΔE genome replicated after cDNA clone was transfected into cells. The infectious virus was rescued and propagated in cells expressing the E protein in trans, indicating that this virus was replication competent and propagation defective. Therefore, the rMERS-CoV-ΔE mutant virus is potentially a safe and promising vaccine candidate to prevent MERS-CoV infection. ⋯ Since the emergence of MERS-CoV in the Arabian Peninsula during the summer of 2012, it has already spread to 10 different countries, infecting around 94 persons and showing a mortality rate higher than 50%. This article describes the development of the first reverse genetics system for MERS-CoV, based on the construction of an infectious cDNA clone inserted into a bacterial artificial chromosome. Using this system, a collection of rMERS-CoV deletion mutants has been generated. Interestingly, one of the mutants with the E gene deleted was a replication-competent, propagation-defective virus that could only be grown in the laboratory by providing E protein in trans, whereas it would only survive a single virus infection cycle in vivo. This virus constitutes a vaccine candidate that may represent a balance between safety and efficacy for the induction of mucosal immunity, which is needed to prevent MERS-CoV infection.
-
Ten years after the severe acute respiratory syndrome epidemic, a second coronavirus, the Middle East respiratory syndrome coronavirus (MERS-CoV), has been identified as the cause of a highly lethal pneumonia in patients in the Middle East and in travelers from this region. Over the past 9 months, since the virus was first isolated, much has been learned about the biology of the virus. ⋯ Most importantly, we do not know whether a MERS-CoV epidemic is likely or not. Infection with the virus has so far resulted in only 91 cases and 46 deaths (as of 29 July 2013), but it is nonetheless setting off alarm bells among public health officials, including Margaret Chan, Director-General of the World Health Organization, who called MERS-CoV "a threat to the entire world." This article reviews some of the progress that has been made and discusses some of the questions that need to be answered.
-
A positive blood culture is a critical result that requires prompt identification of the causative agent. This article describes a simple method to identify microorganisms from positive blood culture broth within the time taken to perform a Gram stain (<20 min). The method is based on intrinsic fluorescence spectroscopy (IFS) of whole cells and required development of a selective lysis buffer, aqueous density cushion, optical microcentrifuge tube, and reference database. A total of 1,121 monomicrobial-positive broth samples from 751 strains were analyzed to build a database representing 37 of the most commonly encountered species in bloodstream infections or present as contaminants. A multistage algorithm correctly classified 99.6% of unknown samples to the Gram level, 99.3% to the family level, and 96.5% to the species level. There were no incorrect results given at the Gram or family classification levels, while 0.8% of results were discordant at the species level. In 8/9 incorrect species results, the misidentified isolate was assigned to a species of the same genus. This unique combination of selective lysis, density centrifugation, and IFS can rapidly identify the most common microbial species present in positive blood cultures. Faster identification of the etiologic agent may benefit the clinical management of sepsis. Further evaluation is now warranted to determine the performance of the method using clinical blood culture specimens. ⋯ Physicians often require the identity of the infective agent in order to make life-saving adjustments to empirical therapy or to switch to less expensive and/or more targeted antimicrobials. However, standard identification procedures take up to 2 days after a blood culture is signaled positive, and even most rapid molecular techniques take several hours to provide a result. Other techniques are faster (e.g., matrix-assisted laser desorption ionization-time of flight [MALDI-TOF] mass spectrometry) but require time-consuming manual processing steps and expensive equipment. There remains a clear need for a simple, inexpensive method to rapidly identify microorganisms directly from positive blood cultures. The promising new method described in this research article can identify microorganisms in minutes by optical spectroscopy, thus permitting the lab to simultaneously report the presence of a positive blood culture and the organism's identity.
-
HIV infection of CD4(+) T cells induces a range of host transcriptional changes in mRNAs as well as microRNAs that may coordinate changes in mRNAs. To survey these dynamic changes, we applied next-generation sequencing, analyzing the small RNA fraction of HIV-infected cells at 5, 12, and 24 h postinfection (RNA-Seq). These time points afforded a view of the transcriptomic changes occurring both before and during viral replication. ⋯ A phased pattern of expression was evident among these microRNAs, and many that were initially suppressed were later overexpressed at the height of infection, providing unique signatures of infection. By integrating additional mRNA data with the microRNA data, we identified a role for microRNAs in transcriptional regulation during infection and specifically a network of microRNAs involved in the expression of a known HIV cofactor. Finally, as a distinct benefit of sequencing, we identified candidate nonannotated microRNAs, including one whose downregulation may allow HIV-1 replication to proceed fully.
-
A novel influenza A virus (IAV) of the H7N9 subtype has been isolated from severely diseased patients with pneumonia and acute respiratory distress syndrome and, apparently, from healthy poultry in March 2013 in Eastern China. We evaluated replication, tropism, and cytokine induction of the A/Anhui/1/2013 (H7N9) virus isolated from a fatal human infection and two low-pathogenic avian H7 subtype viruses in a human lung organ culture system mimicking infection of the lower respiratory tract. The A(H7N9) patient isolate replicated similarly well as a seasonal IAV in explanted human lung tissue, whereas avian H7 subtype viruses propagated poorly. Interestingly, the avian H7 strains provoked a strong antiviral type I interferon (IFN-I) response, whereas the A(H7N9) virus induced only low IFN levels. Nevertheless, all viruses analyzed were detected predominantly in type II pneumocytes, indicating that the A(H7N9) virus does not differ in its cellular tropism from other avian or human influenza viruses. Tissue culture-based studies suggested that the low induction of the IFN-β promoter correlated with an efficient suppression by the viral NS1 protein. These findings demonstrate that the zoonotic A(H7N9) virus is unusually well adapted to efficient propagation in human alveolar tissue, which most likely contributes to the severity of lower respiratory tract disease seen in many patients. ⋯ Humans are usually not infected by avian influenza A viruses (IAV), but this large group of viruses contributes to the emergence of human pandemic strains. Transmission of virulent avian IAV to humans is therefore an alarming event that requires assessment of the biology as well as pathogenic and pandemic potentials of the viruses in clinically relevant models. Here, we demonstrate that an early virus isolate from the recent A(H7N9) outbreak in Eastern China replicated as efficiently as human-adapted IAV in explanted human lung tissue, whereas avian H7 subtype viruses were unable to propagate. Robust replication of the H7N9 strain correlated with a low induction of antiviral beta interferon (IFN-β), and cell-based studies indicated that this is due to efficient suppression of the IFN response by the viral NS1 protein. Thus, explanted human lung tissue appears to be a useful experimental model to explore the determinants facilitating cross-species transmission of the H7N9 virus to humans.