Mbio
-
The mammalian stages of the parasite Trypanosoma cruzi, the causative agent of Chagas disease, exhibit a wide host species range and extensive within-host tissue distribution. These features, coupled with the ability of the parasites to persist for the lifetime of the host, suggest an inherent capacity to tolerate changing environments. To examine this potential, we studied proliferation and cell cycle dynamics of intracellular T. cruzi amastigotes experiencing transient metabolic perturbation or drug pressure in the context of an infected mammalian host cell. ⋯ Such tissue-resident T. cruzi amastigotes are refractory to immune-mediated clearance and to drug treatment, suggesting that in addition to exploiting immune avoidance mechanisms, amastigotes can facilitate their survival by adapting flexibly to diverse environmental stressors. We discovered that T. cruzi intracellular amastigotes exhibit growth plasticity as a strategy to adapt to and rebound from environmental stressors, including metabolic blockades, nutrient starvation, and sublethal exposure to the first-line therapy drug benznidazole. These findings have important implications for understanding parasite persistence, informing drug development, and interpreting drug efficacy.
-
Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has complicated development of antiviral nucleosides due to its proofreading activity. We recently reported that the nucleoside analogue GS-5734 (remdesivir) potently inhibits human and zoonotic CoVs in vitro and in a severe acute respiratory syndrome coronavirus (SARS-CoV) mouse model. ⋯ Following selection with the GS-5734 parent nucleoside, 2 amino acid substitutions in the nsp12 polymerase at residues that are identical across CoVs provide low-level resistance to GS-5734. The resistance mutations decrease viral fitness of MHV in vitro and attenuate pathogenesis in a SARS-CoV animal model of infection. Together, these studies define the target of GS-5734 activity and demonstrate that resistance is difficult to select, only partial, and impairs fitness and virulence of MHV and SARS-CoV, supporting further development of GS-5734 as a potential effective pan-CoV antiviral.
-
Sepsis caused by Neisseria meningitidis (meningococcus) is a rapidly progressing, life-threatening disease. Because its initial symptoms are rather unspecific, medical attention is often sought too late, i.e., when the systemic inflammatory response is already unleashed. This in turn limits the success of antibiotic treatment. ⋯ Here, we consider the potential of separating the bactericidal activities of the complement cascade from its immune activating function to improve outcome of N. meningitidis sepsis. Our findings demonstrate that the specific genetic or pharmacological disruption of C5aR1 rapidly ameliorates disease by suppressing the pathogenic inflammatory response and, surprisingly, allows faster clearance of the bacterial infection. This outcome provides a clear demonstration of the therapeutic benefit of the use of C5aR1-specific inhibitors to improve the outcome of invasive meningococcal disease.
-
Polymicrobial intra-abdominal infections (IAIs) are clinically prevalent and cause significant morbidity and mortality, especially those involving fungi. Our laboratory developed a mouse model of IAI and demonstrated that intraperitoneal inoculation with Candida albicans or other virulent non-albicans Candida (NAC) species plus Staphylococcus aureus resulted in 70 to 80% mortality in 48 to 72 h due to robust local and systemic inflammation (sepsis). Surprisingly, inoculation with Candida dubliniensis or Candida glabrata with S. aureus resulted in minimal mortality, and rechallenge of these mice with lethal C. albicans/S. aureus (i.e., coninfection) resulted in >90% protection. ⋯ Our studies demonstrate that prior inoculation with low-virulence Candida species provides strong protection against subsequent lethal infection with C. albicans and S. aureus Surprisingly, protection is long-lived but not mediated by adaptive (specific) immunity. Instead, protection is dependent on cells of the innate immune system (nonspecific immunity) and provides protection against other virulent Candida species. This discovery implies that a form of trained innate immunity may be clinically effective against polymicrobial IAI.
-
Cystic fibrosis (CF) is caused by mutations in the CFTR gene and is associated with progressive and ultimately fatal infectious lung disease. There can be considerable variability in disease severity among individuals with the same CFTR mutations, and recent genome-wide association studies have identified secondary genetic factors that contribute to this. One of these modifier genes is SLC6A14, which encodes an amino acid transporter. ⋯ Genome-wide association studies have been used to identify secondary genetic factors that may explain the variable susceptibility to infection by opportunistic pathogens, including P. aeruginosa, the leading cause of pathogen-induced lung damage in nonpediatric CF patients. Once identified and characterized, these secondary genetic modifiers may allow for the development of personalized medicine for patients and ultimately the extension of life. In this study, we interrogated the biological role of one of these modifiers, SLC6A14, and showed that it contributes to host defense by depleting extracellular arginine (an attachment-promoting metabolite for P. aeruginosa) from the airway surface liquid.