Acs Chem Neurosci
-
The objective of the study was to explore the potential value of plasma indicators for identifying amnesic mild cognitive impairment (aMCI) and determine whether levels of plasma indicators are related to the performance of cognitive function and brain tissue volumes. In total, 155 participants (68 aMCI patients and 87 health controls) were recruited in the present cross-sectional study. The levels of plasma amyloid-β (Aβ) 40, Aβ42, total tau (t-tau), and neurofilament light (NFL) were measured using an ultrasensitive quantitative method. ⋯ An integrated model included clinical features, hippocampus volume, and plasma Aβ42 and NFL and had the highest accuracy for detecting aMCI patients (accuracy, 74.2%). We demonstrated that plasma Aβ40, Aβ42, t-tau, and NFL may be useful to identify aMCI and correlate with cognitive decline and brain atrophy. Among these plasma indicators, Aβ42 and NFL are more valuable as key members of a peripheral biomarker panel to detect aMCI.
-
Effective therapies for glioblastoma multiforme (GBM) are not currently available. A small molecule has been identified using fragment-based drug-discovery guided by NMR that targets important protein-protein interactions controlling GBM invasion and pathogenicity. This first generation drug displays excellent pharmacokinetic properties, passes through the blood-brain barrier and is effective in preclinical animal models of GBM, particularly when combined with radiation therapy.
-
Preclinical and clinical data suggest that muscarinic acetylcholine receptor activation may be therapeutically beneficial for the treatment of schizophrenia and Alzheimer's diseases. This is best exemplified by clinical observations with xanomeline, the efficacy of which is thought to be mediated through co-activation of the M1 and M4 muscarinic acetylcholine receptors (mAChRs). Here we examined the impact of treatment with xanomeline and compared it to the actions of selective M1 and M4 mAChR activators on in vivo intracellular signaling cascades in mice, including 3'-5'-cyclic adenosine monophosphate response element binding protein (CREB) phosphorylation and inositol phosphate-1 (IP1) accumulation in the striatum, hippocampus, and prefrontal cortex. ⋯ As expected, xanomeline's effects across these readouts were consistent with activation of both M1 and M4 mAChRs; however, differences were observed across different brain regions, suggesting non-uniform activation of these receptor subtypes in the central nervous system. Interestingly, despite having nearly equal in vitro potency at the M1 and the M4 mAChRs, during in vivo assays xanomeline produced M4-like effects at significantly lower brain exposures than those at which M1-like effects were observed. Our results raise the possibility that clinical efficacy observed with xanomeline was driven, in part, through its non-uniform activation of mAChR subtypes in the central nervous system and, at lower doses, through preferential agonism of the M4 mAChR.
-
This Letter describes the chemical optimization of a new series of muscarinic acetylcholine receptor subtype 1 (M1) positive allosteric modulators (PAMs) based on novel tricyclic triazolo- and imidazopyridine lactam cores, devoid of M1 agonism, e.g., no M1 ago-PAM activity, in high expressing recombinant cell lines. While all the new tricyclic congeners afforded excellent rat pharmacokinetic (PK) properties (CLp < 8 mL/min/kg and t1/2 > 5 h), regioisomeric triazolopyridine analogues were uniformly not CNS penetrant ( Kp < 0.05), despite a lack of hydrogen bond donors. ⋯ Moreover, 24c was devoid of M1 agonism in high expressing recombinant cell lines and did not induce cholinergic seizures in vivo in mice. Interestingly, all of the new M1 PAMs across the diverse tricyclic heterocyclic cores possessed equivalent CNS MPO scores (>4.5), highlighting the value of both "medicinal chemist's eye" and experimental data, e.g., not sole reliance (or decision bias) on in silico calculated properties, for parameters as complex as CNS penetration.
-
There is a paucity of efficacious novel drugs to address high rates of treatment resistance and refractory symptoms in schizophrenia. The identification of novel therapeutic indications for approved drugs-drug repurposing-has the potential to expedite clinical trials and reduce the costly risk of failure which currently limits central nervous system drug discovery efforts. In the present Review we discuss the historical role of drug repurposing in schizophrenia drug discovery and review the main classes of repurposing candidates currently in clinical trials for schizophrenia in terms of their therapeutic rationale, mechanisms of action, and preliminary results from clinical trials. Subsequently we outline the challenges and limitations which face the clinical repurposing pipeline and how novel technologies might serve to address these.