Acs Chem Neurosci
-
Traumatic brain injury (TBI) affects millions yearly, and is increasingly associated with chronic neuropsychiatric symptoms. We assessed the long-term effects of different bilateral frontal controlled cortical impact injury severities (mild, moderate, and severe) on the five-choice serial reaction time task, a paradigm with relatively independent measurements of attention, motor impulsivity, and motivation. Moderately- and severely injured animals exhibited impairments across all cognitive domains that were still evident 14 weeks postinjury, while mild-injured animals only demonstrated persistent deficits in impulse control. ⋯ Analysis of brain tissue revealed that generalized neuroinflammation was associated with impulsivity even when accounting for the degree of brain damage. This is one of the first studies to characterize psychiatric-like symptoms in experimental TBI. Our data highlight the importance of testing pharmacotherapies in TBI models in order to predict efficacy, and suggest that neuroinflammation may represent a treatment target for impulse control problems following injury.
-
Chemotherapy-induced neuropathic pain (CINP) remains a major unmet medical need. Estrogen receptor beta (ERβ)-selective agonists represent a novel strategy for treating CINP because they are neuroprotective and may also have anticancer activity. We confirmed that ERβ-selective agonists have antiallodynic effects in the spinal nerve ligation model of neuropathic pain. ⋯ The efficacy and potency of ERβ-agonists was greater in male rats than females. To address the possibility that AC-186 might stimulate proliferation of cancers, rendering it unsuitable for treating CINP, we evaluated proliferative effects of AC-186 on prostate cancer cells and found it inhibited growth (LNCaP cells) or had no effect (PC3 cells) on these cells. Thus, ERβ-selective agonists exhibit potential for treating CINP.
-
Indole and indazole synthetic cannabinoids (SCs) featuring l-valinate or l-tert-leucinate pendant group have recently emerged as prevalent recreational drugs, and their use has been associated with serious adverse health effects. Due to the limited pharmacological data available for these compounds, 5F-AMBICA, 5F-AMB, 5F-ADB, AMB-FUBINACA, MDMB-FUBINACA, MDMB-CHMICA, and their analogues were synthesized and assessed for cannabimimetic activity in vitro and in vivo. All SCs acted as potent, highly efficacious agonists at CB1 (EC50 = 0.45-36 nM) and CB2 (EC50 = 4.6-128 nM) receptors in a fluorometric assay of membrane potential, with a general preference for CB1 activation. ⋯ Bradycardia and hypothermia were induced by 5F-AMB and MDMB-FUBINACA doses of 0.1-1 mg/kg (and 3 mg/kg for 5F-AMB), with MDMB-FUBINACA showing the most dramatic hypothermic response recorded in our laboratory for any SC (>3 °C at 0.3 mg/kg). Reversal of hypothermia by pretreatment with a CB1, but not CB2, antagonist was demonstrated for 5F-AMB and MDMB-FUBINACA, consistent with CB1-mediated effects in vivo. The in vitro and in vivo data indicate that these SCs act as highly efficacious CB receptor agonists with greater potency than Δ(9)-THC and earlier generations of SCs.
-
As the first drug to see widespread use for the treatment of attention deficit hyperactivity disorder (ADHD), methylphenidate was the forerunner and catalyst to the modern era of rapidly increasing diagnosis, treatment, and medication development for this condition. During its often controversial history, it has variously elucidated the importance of dopamine signaling in memory and attention, provoked concerns about pharmaceutical cognitive enhancement, driven innovation in controlled-release technologies and enantiospecific therapeutics, and stimulated debate about the impact of pharmaceutical sales techniques on the practice of medicine. In this Review, we will illustrate the history and importance of methylphenidate to ADHD treatment and neuroscience in general, as well as provide key information about its synthesis, structure-activity relationship, pharmacological activity, metabolism, manufacturing, FDA-approved indications, and adverse effects.
-
Anesthetics are widely used in medical practice and experimental research, yet the neurobiological basis governing their effects remains obscure. We have here used quantitative phosphoproteomics to investigate the protein phosphorylation changes produced by a 30 min isoflurane anesthesia in the adult mouse hippocampus. Altogether 318 phosphorylation alterations in total of 237 proteins between sham and isoflurane anesthesia were identified. ⋯ Along with confirmatory Western blot data for GSK3β and p44/42-MAPK (mitogen-activated protein kinase; reduced phosphorylation of the activation loop), we observed increased phosphorylation of microtubule-associated protein 2 (MAP2) on residues (Thr(1620,1623)) that have been shown to render its dissociation from microtubules and alterations in microtubule stability. We further demonstrate that diverse anesthetics (sevoflurane, urethane, ketamine) produce essentially similar phosphorylation changes on GSK3β, p44/p42-MAPK, and MAP2 as observed with isoflurane. Altogether our study demonstrates the potential of quantitative phosphoproteomics to study the mechanisms of anesthetics (and other drugs) in the mammalian brain and reveals how already a relatively brief anesthesia produces pronounced phosphorylation changes in multiple proteins in the central nervous system.