Int J Biol Sci
-
Review
Perspectives on therapeutic neutralizing antibodies against the Novel Coronavirus SARS-CoV-2.
A newly identified novel coronavirus (SARS-CoV-2) is causing pneumonia-associated respiratory syndrome across the world. Epidemiology, genomics, and pathogenesis of the SARS-CoV-2 show high homology with that of SARS-CoV. Current efforts are focusing on development of specific antiviral drugs. ⋯ Herein, the host immune responses against SARS-CoV discussed in this review provide implications for developing NAbs and understanding clinical interventions against SARS-CoV-2. Further, we describe the benefits, challenges and considerations of NAbs against SARS-CoV-2. Although many challenges exist, NAbs still offer a therapeutic option to control the current pandemic and the possible re-emergence of the virus in the future, and their development therefore remains a high priority.
-
In December 2019, an acute respiratory disease caused by novel species of coronavirus (SARS-CoV-2), emerged in China and has spread throughout the world. On 11th March 2020, the World Health Organization (WHO) officially declared coronavirus disease 19 (COVID-19) a pandemic, severe coronavirus-mediated human disease. Based on genomic and phylogenetic studies, SARS-CoV-2 might originate from bat coronaviruses and infects humans directly or through intermediate zoonotic hosts. ⋯ COVID-19 shares both the main clinical features and excessive/dysregulated cell responses with the two previous Middle East respiratory syndrome coronavirus (MERS) and severe acute respiratory syndrome coronavirus (SARS) epidemics. In this review, we provide an update of the current knowledge on the COVID-19 pandemic. Gaining a deeper understanding of SARS-CoV-2 structure, transmission routes, and molecular responses, will assist in the prevention and control of COVID-19 outbreaks in the future.
-
Review
Targeting the Endocytic Pathway and Autophagy Process as a Novel Therapeutic Strategy in COVID-19.
Coronaviruses (CoVs) are a group of enveloped, single-stranded positive genomic RNA viruses and some of them are known to cause severe respiratory diseases in human, including Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS) and the ongoing coronavirus disease-19 (COVID-19). One key element in viral infection is the process of viral entry into the host cells. ⋯ In this mini-review, we will focus on the importance of the endocytic pathway as well as the autophagy process in viral infection of several pathogenic CoVs inclusive of SARS-CoV, MERS-CoV and the new CoV named as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and discuss the development of therapeutic agents by targeting these processes. Such knowledge will provide important clues for control of the ongoing epidemic of SARS-CoV-2 infection and treatment of COVID-19.
-
Unprecedented measures have been adopted to control the rapid spread of the ongoing COVID-19 epidemic in China. People's adherence to control measures is affected by their knowledge, attitudes, and practices (KAP) towards COVID-19. In this study, we investigated Chinese residents' KAP towards COVID-19 during the rapid rise period of the outbreak. ⋯ Most Chinese residents of a relatively high socioeconomic status, in particular women, are knowledgeable about COVID-19, hold optimistic attitudes, and have appropriate practices towards COVID-19. Health education programs aimed at improving COVID-19 knowledge are helpful for Chinese residents to hold optimistic attitudes and maintain appropriate practices. Due to the limited sample representativeness, we must be cautious when generalizing these findings to populations of a low socioeconomic status.
-
The main pathogenesis of steroid-induced osteonecrosis of the femoral head (SONFH) includes decreased osteogenic capacity of bone marrow-derived mesenchymal stem cells (BMSCs) and damaged blood supply to the femoral head. MicroRNAs (miRNAs) have been shown to play prominent roles in SONFH development. However, there is no report that a specific miRNA targeting two genes in two different pathogenic pathways has been applied to this disease. ⋯ Micro-CT and histology showed that the transplantation of miR-137-3p-silenced BMSCs significantly improved bone regeneration. Additionally, the results of enzyme-linked immunosorbent assays (ELISA) and flow cytometry suggested that stromal cell-derived factor-1α (SDF-1α) and endothelial progenitor cells (EPCs) participated in the process of vascular repair. Taken together, these findings show that silencing of miR-137-3p directly targets the genes, Runx2 and CXCL12, which can play critical roles in SONFH repair by facilitating osteogenic differentiation and mobilizing EPCs.