J Lipid Res
-
Randomized Controlled Trial Clinical Trial Controlled Clinical Trial
Differential modulation of Toll-like receptors by fatty acids: preferential inhibition by n-3 polyunsaturated fatty acids.
Human subjects consuming fish oil showed a significant suppression of cyclooxygenase-2 (COX-2) expression in blood monocytes when stimulated in vitro with lipopolysaccharide (LPS), an agonist for Toll-like receptor 4 (TLR4). Results with a murine monocytic cell line (RAW 264.7) stably transfected with COX-2 promoter reporter gene also demonstrated that LPS-induced COX-2 expression was preferentially inhibited by docosahexaenoic acid (DHA, C22:6n-3) and eicosapentaenoic acid (EPA, C20:5n-3), the major n-3 polyunsaturated fatty acids (PUFAs) present in fish oil. Additionally, DHA and EPA significantly suppressed COX-2 expression induced by a synthetic lipopeptide, a TLR2 agonist. ⋯ In contrast, COX-2 expression by TLR2 or TRL4 agonist was potentiated by lauric acid, a saturated fatty acid. These results demonstrate that inhibition of COX-2 expression by n-3 PUFAs is mediated through the modulation of TLR-mediated signaling pathways. Thus, the beneficial or detrimental effects of different types of dietary fatty acids on the risk of the development of many chronic inflammatory diseases may be in part mediated through the modulation of TLRs.
-
Apolipoprotein E (apoE) is the primary recognition signal on triglyceride-rich lipoproteins responsible for interacting with low density lipoprotein (LDL) receptors and LDL receptor-related protein (LRP). It has been shown that lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) promote receptor-mediated uptake and degradation of very low density lipoproteins (VLDL) and remnant particles, possibly by directly binding to lipoprotein receptors. In this study we have investigated the requirement for apoE in lipase-stimulated VLDL degradation. ⋯ Surface binding of apoE knockout or apoE-depleted VLDL was to heparin sulfate proteoglycans because it was completely abolished by heparinase treatment. However, apoE appears to be a primary determinant for receptor-mediated VLDL degradation. Our studies suggest that overexpression of LPL or HTGL may not protect against lipoprotein accumulation seen in apoE deficiency.
-
Recently, great progress has been made towards understanding the molecular basis of body fat regulation. Identification of mutations in several genes in spontaneous monogenic animal models of obesity and development of transgenic models have indicated the physiological roles of many genes in the regulation of body fat distribution. In humans, mutations in leptin, leptin receptor, prohormone convertase 1 (PC1), pro-opiomelanocortin (POMC), melanocortin 4-receptor (MC4-R), and peroxisome proliferator-activated receptor (PPAR) gamma2 genes have been described in patients with severe obesity. ⋯ These mutations suggest the critical role of central signaling systems composed of leptin/leptin receptor and alpha-melanocyte stimulating hormone/MC4-R in human energy homeostasis. Although the genetic basis of monogenic disorders of body fat distribution, such as congenital generalized lipodystrophy and familial partial lipodystrophy, Dunnigan variety, is still unknown, the genes for these have recently been localized to chromosomes 9q34 and 1q21-22, respectively. The advances in our knowledge of the phenotypic manifestations and underlying molecular mechanisms of genetic body fat disorders may lead to better treatment and prevention of obesity and other disorders of adipose tissue in the future.
-
To search for unique mutations in the apolipoprotein B (apoB) gene that disrupt the binding of LDL to its receptor and cause hypercholesterolemia, we examined more than 800 patients with high LDL cholesterol levels and/or coronary artery disease (CAD). Analysis of patient DNA by single-strand conformation polymorphism and allele-specific oligonucleotide hybridization of the sequence surrounding the putative receptor- binding domain of apoB (amino acid positions 2965 to 3534) revealed seven variations. LDL from heterozygotes with either Arg 3500 Gln or Arg 3531 Cys bound defectively with the LDL receptor in competitive binding assays. ⋯ The other four variants identified (Leu 3350 Leu, Gln 3405 Glu, Val 3396 Met, and Ser 3455 Arg) were not associated with defective LDL-receptor binding, hypercholesterolemia, or CAD, nor were the apoB mutations associated with elevated lipid levels in family members. The surprising result that only two mutations of apoB in the receptor-binding domain (Arg 3500 Gln and Arg 3531 Cys) were associated with defective LDL binding, hypercholesterolemia, or CAD is in stark contrast with familial hypercholesterolemia, where nearly 150 mutations of the LDL receptor have been described that disrupt its function. This study strongly suggests that a limited number of mutations of apoB markedly influence LDL binding to its receptor.
-
Familial combined hyperlipoproteinemia (FCH) is a common familial lipoprotein disorder characterized by elevated plasma cholesterol and triglyceride levels with segregation in first-degree relatives. Most affected subjects with FCH have elevated plasma levels of apolipoprotein (apo) B. The disorder results from oversecretion of hepatic apoB-containing lipoprotein particles. ⋯ There was no significant effect of the presence or absence of the XmnI or SstI RFLP's on plasma lipids, lipoprotein cholesterol or apoB levels. Only one FCH proband was found to have a mutation of the LPL gene (Gly188Glu), and this did not segregate with the FCH phenotype in the family. We conclude that in our highly selected group of FCH subjects of French Canadian descent, the XmnI and SstI RFLPs of the apoA-I gene and common functional mutations of the LPL gene resulting in complete LPL deficiency are not associated with FCH.