Resp Res
-
Mechanical ventilation and concomitant administration of hyperoxia in patients with acute respiratory distress syndrome can damage the alveolar epithelial and capillary endothelial barrier by producing inflammatory cytokines and reactive oxygen species. The Src tyrosine kinase and Smad3 are crucial inflammatory regulators used for ventilator-induced lung injury (VILI). The mechanisms regulating interactions between high-tidal-volume mechanical ventilation, hyperoxia, and acute lung injury (ALI) are unclear. We hypothesized that high-tidal-volume mechanical stretches and hyperoxia augment lung inflammation through upregulation of the Src and Smad3 pathways. ⋯ Our data suggest that hyperoxia-increased high-tidal-volume ventilation-induced ALI partially depends on the Src and Smad3 pathways.
-
Chronic obstructive pulmonary disease (COPD) is characterized by excessive inflammation and disturbed bacterial clearance in the airways. Although cigarette smoke (CS) exposure poses a major risk, vitamin D deficiency could potentially contribute to COPD progression. Many in vitro studies demonstrate important anti-inflammatory and antibacterial effects of vitamin D, but a direct contribution of vitamin D deficiency to COPD onset and disease progression has not been explored. ⋯ Our data demonstrate that vitamin D deficiency both accelerates and aggravates the development of characteristic disease features of COPD. As vitamin D deficiency is highly prevalent, large randomized trials exploring effects of vitamin D supplementation on lung function decline and COPD onset are needed.
-
Pulmonary system dysfunction is a hallmark of cystic fibrosis (CF) disease. In addition to impaired cystic fibrosis transmembrane conductance regulator protein, dysfunctional β2-adrenergic receptors (β2AR) contribute to low airway function in CF. Recent observations suggest CF may also be associated with impaired cardiac function that is demonstrated by attenuated cardiac output (Q), stroke volume (SV), and cardiac power (CP) at both rest and during exercise. However, β2AR regulation of cardiac and peripheral vascular tissue, in-vivo, is unknown in CF. We have previously demonstrated that the administration of an inhaled β-agonist increases SV and Q while also decreasing SVR in healthy individuals. Therefore, we aimed to assess cardiac and peripheral hemodynamic responses to the selective β2AR agonist albuterol in individuals with CF. ⋯ Cardiac and peripheral hemodynamic responsiveness to acute β2AR stimulation via albuterol is attenuated in individuals with CF, suggesting β2AR located in cardiac and peripheral vascular tissue may be dysfunctional in this population.