Bmc Neurosci
-
Comparative Study
Neuroprotective effects of edaravone-administration on 6-OHDA-treated dopaminergic neurons.
Parkinson's disease (PD) is a neurological disorder characterized by the degeneration of nigrostriatal dopaminergic systems. Free radicals induced by oxidative stress are involved in the mechanisms of cell death in PD. This study clarifies the neuroprotective effects of edaravone (MCI-186, 3-methyl-1-phenyl-2-pyrazolin-5-one), which has already been used for the treatment of cerebral ischemia in Japan, on TH-positive dopaminergic neurons using PD model both in vitro and in vivo. 6-hydroxydopamine (6-OHDA), a neurotoxin for dopaminergic neurons, was added to cultured dopaminergic neurons derived from murine embryonal ventral mesencephalon with subsequet administration of edaravone or saline. The number of surviving TH-positive neurons and the degree of cell damage induced by free radicals were analyzed. In parallel, edaravone or saline was intravenously administered for PD model of rats receiving intrastriatal 6-OHDA lesion with subsequent behavioral and histological analyses. ⋯ Edaravone exerts neuroprotective effects on PD model both in vitro and in vivo. The underlying mechanisms might be involved in the anti-apoptotic effects, anti-oxidative effects, and/or anti-inflammatory effects of edaravone. Edaravone might be a hopeful therapeutic option for PD, although the high therapeutic dosage remains to be solved for the clinical application.
-
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that affects a large and growing number of elderly individuals. In addition to idiopathic disease, AD is also associated with autosomal dominant inheritance, which causes a familial form of AD (FAD). Some instances of FAD have been linked to mutations in the beta-amyloid protein precursor (APP). Although there are numerous mouse AD models available, few rat AD models, which have several advantages over mice, have been generated. ⋯ This manuscript describes the generation of APP-transgenic inbred Fischer 344 rats. These are the first human AD model rat lines generated by lentiviral infection. The APP21 rat line expresses high levels of human APP and could be a useful model for AD. Tissue-specific expression in the two transgenic rat lines and in wild-type rats contradicts our current understanding of APP gene regulation. Determination of the elements that are responsible for tissue-specific expression of APP may enable new treatment options for AD.
-
Previous reports of inhibition in the neocortex suggest that inhibition is mediated predominantly through GABA(A) receptors exhibiting fast kinetics. Within the hippocampus, it has been shown that GABA(A) responses can take the form of either fast or slow response kinetics. Our findings indicate, for the first time, that the neocortex displays synaptic responses with slow GABA(A) receptor mediated inhibitory postsynaptic currents (IPSCs). These IPSCs are kinetically and pharmacologically similar to responses found in the hippocampus, although the anatomical specificity of evoked responses is unique from hippocampus. Spontaneous slow GABA(A) IPSCs were recorded from both pyramidal and inhibitory neurons in rat visual cortex. ⋯ GABA(A) slow IPSCs displayed durations that were approximately 4 fold longer than typical GABA(A)fast IPSCs, but shorter than GABA(B)-mediated inhibition. The anatomical and pharmacological specificity of evoked slow IPSCs suggests a unique origin of synaptic input. Incorporating GABA(A) slow IPSCs into computational models of cortical function will help improve our understanding of cortical information processing.
-
Previous studies found that rats subjected to carrageenan injection develop hyperalgesia, and despite complete recovery in several days, they continue to have an enhanced hyperalgesic response to a new noxious challenge for more than 28d. The study's aim was to identify candidate genes that have a role in the formation of the long-term hyperalgesia-related imprint in the spinal cord. This objective was undertaken with the understanding that the long-lasting imprint of acute pain in the central nervous system may contribute to the transition of acute pain to chronicity. ⋯ Despite recovery from inflammatory hyperalgesia, persistent changes in spinal cord gene expression may underlie the propensity for the enhanced hyperalgesic response. We suggest that lasting changes in expression of genes involved in the formation of new synapses and neurogenesis may contribute to the transition of acute pain to chronicity.