Brain Res Rev
-
Neuropathic pain is currently being treated by a range of therapeutic interventions that above all act to lower neuronal activity in the somatosensory system (e.g. using local anesthetics, calcium channel blockers, and opioids). The present review highlights novel and often still largely experimental treatment approaches based on insights into pathological mechanisms, which impact on the spinal nociceptive network, thereby opening the 'gate' to higher brain centers involved in the perception of pain. Cellular and molecular mechanisms such as ectopia, sensitization of nociceptors, phenotypic switching, structural plasticity, disinhibition, and neuroinflammation are discussed in relation to their involvement in pain hypersensitivity following either peripheral neuropathies or spinal cord injury. ⋯ Subsequently, identification of the therapeutic window-of-opportunities for each specific intervention in the particular peripheral and/or central neuropathy is essential for successful clinical trials. Most of the cellular and molecular pain mechanisms described in the present review suggest pharmacological interference for neuropathic pain management. However, also more invasive treatment approaches belong to current and/or future options such as neuromodulatory interventions (including spinal cord stimulation) and cell or gene therapies, respectively.
-
This article provides a survey of major methodological and analytic developments in the use of functional neuroimaging to study complex structural and functional brain activity and connectivity, including data analysis methods devised to distill network properties from high-dimensional and multimodal datasets. The goal of this survey is to provide those in the broader neuroscientific community with an understanding of these developments sufficient to facilitate an informed reading of the literature, and a thoughtful approach to their use in the investigation of questions in their own areas of interest. Practical methodological considerations for assessing and designing functional neuroimaging studies are provided, as are examples of the types of questions that can be addressed by various techniques.
-
Crucial to our everyday social functioning is an ability to interpret the behaviors of others. This process involves a rapid understanding of what a given action is not only in a physical sense (e.g., a precision grip around the stem of a wine glass) but also in a semantic sense (e.g., an invitation to "cheers"). ⋯ The controversy surrounds the role of the "mirror neuron system" in action understanding: do MNs allow us to comprehend others' actions by allowing us to internally represent their behaviors or do they simply activate a direct motor representation of the perceived act without recourse to its meaning? This review outlines evidence from both human and primate literatures, indicating the importance of end-goals in action representations within the motor system and their predominance in influencing action plans. We integrate this evidence with recent views regarding the complex and dynamic nature of the mirror neuron system and its ability to respond to broad motor outcomes.
-
According to the traditional hypothesis, the cerebrospinal fluid (CSF) is secreted inside the brain ventricles and flows unidirectionally along subarachnoid spaces to be absorbed into venous sinuses across arachnoid villi and/or via paraneural sheaths of nerves into lymphatics. However, according to recent investigations, it appears that interstitial fluid (ISF) and CSF are formed by water filtration across the walls of arterial capillaries in the central nervous system (CNS), while plasma osmolytes are sieved (retained) so that capillary osmotic counterpressure is generated, which is instrumental in ISF/CSF water absorption into venous capillaries and postcapillary venules. ⋯ Multidirectional distribution of substances inside CSF, as well as between CSF and ISF, is caused by to-and-fro pulsations of these fluids and their mixing. Absorption of CSF into venous sinuses and/or lymphatics under the physiological pressure should be of minor importance due to their minute surface area in comparison to the huge absorptive surface area of microvessels.
-
Review Retracted Publication
Mechanism(s) of deep brain stimulation and insights into cognitive outcomes in Parkinson's disease.
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor, cognitive, neuropsychiatric, autonomic, and other nonmotor symptoms. Deep brain stimulation (DBS) at high frequency is now considered the most effective neurosurgical therapy for movement disorders, especially PD. An electrode is chronically implanted in a particular area of the brain and, when continuously stimulated, it significantly alleviates motor symptoms. ⋯ Although the efficacy of DBS for the motor symptoms of advanced PD is well established, the effects of DBS on the cognitive and neuropsychiatric symptoms are less clear. The cognitive aspects of DBS for PD have recently been of considerable clinical and pathophysiological interest. This article also reviews the published literature on the cognitive aspects of DBS for PD.