Front Hum Neurosci
-
Several studies in cognitive neuroscience have investigated the cognitive and affective modulation of pain. By contrast, fewer studies have focused on the social modulation of pain, despite a plethora of relevant clinical findings. Here we present the first review of experimental studies addressing how interpersonal factors, such as the presence, behavior, and spatial proximity of an observer, modulate pain. ⋯ Based on these findings, we propose that the modulation of pain by social factors can be fruitfully understood in relation to a recent predictive coding model, the free energy framework, particularly as applied to interoception and social cognition. Specifically, we argue that interpersonal interactions during pain may function as social, predictive signals of contextual threat or safety and as such influence the salience of noxious stimuli. The perception of such interpersonal interactions may in turn depend on (a) prior beliefs about interpersonal relating and (b) the certainty or precision by which an interpersonal interaction may predict environmental threat or safety.
-
It has been demonstrated that visual inputs can modulate pain. However, the influence of skin color on pain perception is unknown. Red skin is associated to inflamed, hot and more sensitive skin, while blue is associated to cyanotic, cold skin. ⋯ This effect was specific when red was seen on the arm, while seeing red in a spot outside the arm did not decrease pain threshold. These results demonstrate an influence of skin color on pain perception. This top-down modulation of pain through visual input suggests a potential use of embodied virtual bodies for pain therapy.
-
The n-back task is widely used to investigate the neural basis of Working Memory (WM) processes. The principal aim of this study was to explore and compare the EEG power spectra during two n-back tests with different levels of difficulty (1-back vs. 3-back). Fourteen healthy subjects were enrolled (seven men and seven women, mean age 31.21 ± 7.05 years, range: 23-48). ⋯ Significant changes occurred in the delta band: in the 3-back condition an increased delta power was localized in a brain region corresponding to the Brodmann Area (BA) 28 in the left posterior entorhinal cortex (T = 3.112; p < 0.05) and in the BA 35 in the left perirhinal cortex in the parahippocampal gyrus (T = 2.876; p < 0.05). No significant differences were observed in the right hemisphere and in the alpha, theta, beta, and gamma frequency bands. Our results indicate that the most prominent modification induced by the increased complexity of the task occur in the mesial left temporal lobe structures.
-
Prism adaptation improves a wide range of manifestations of left spatial neglect in right-brain-damaged patients. The typical paradigm consists in repeated pointing movements to visual targets, while patients wear prism goggles that displace the visual scene rightwards. Recently, we demonstrated the efficacy of a novel adaptation procedure, involving a variety of every-day visuo-motor activities. ⋯ A similar trend was found for the visual task in both groups. Finally, participants rated the ecological procedure as more pleasant, less monotonous, and more sustainable than the pointing procedure. These results qualify ecological visuo-motor activities as an effective prism-adaptation procedure, suitable for the rehabilitation of spatial neglect.
-
Patients with Complex Regional Pain Syndrome (CRPS) experience distressing changes in body perception. However representing body perception is a challenge. A digital media tool for communicating body perception disturbances was developed. ⋯ All reported the tool acceptable for communicating their body perception. Participants described the positive impact of now seeing an image they had previously only imagined and could now convey to others. The application has provided a novel way for communicating perceptions that are otherwise difficult to convey.