Front Hum Neurosci
-
"Chronic traumatic encephalopathy" (CTE) is described as a slowly progressive neurodegenerative disease believed to result from multiple concussions. Traditionally, concussions were considered benign events and although most people recover fully, about 10% develop a post-concussive syndrome with persisting neurological, cognitive and neuropsychiatric symptoms. ⋯ Much remains unknown about the development of CTE but its pathological substrate is usually tau, similar to that seen in Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD). The aim of this "perspective" is to compare and contrast clinical and pathological CTE with the other neurodegenerative proteinopathies and highlight that there is an urgent need for understanding the relationship between concussion and the development of CTE as it may provide a window into the development of a proteinopathy and thus new avenues for treatment.
-
Research in sports, dance and rehabilitation has shown that basic action concepts (BACs) are fundamental building blocks of mental action representations. BACs are based on chunked body postures related to common functions for realizing action goals. In this paper, we outline issues in research methodology and an experimental method, the structural dimensional analysis of mental representation (SDA-M), to assess action-relevant representational structures that reflect the organization of BACs. ⋯ We show how the SDA-M can improve motor imagery training and how it contributes to our understanding of coaching processes. The SDA-M capitalizes on the objective measurement of individual mental movement representations before training and the integration of these results into the motor imagery training. Such motor imagery training based on mental representations (MTMR) has been applied successfully in professional sports such as golf, volleyball, gymnastics, windsurfing, and recently in the rehabilitation of patients who have suffered a stroke.
-
Many neurocognitive studies on the role of motor structures in action-language processing have implicitly adopted a "dictionary-like" framework within which lexical meaning is constructed on the basis of an invariant set of semantic features. The debate has thus been centered on the question of whether motor activation is an integral part of the lexical semantics (embodied theories) or the result of a post-lexical construction of a situation model (disembodied theories). However, research in psycholinguistics show that lexical semantic processing and context-dependent meaning construction are narrowly integrated. ⋯ Importantly, however, the same linguistic contexts that sufficed to trigger motor activation with pseudo-verbs failed to trigger motor activation when the target words were verbs with no motor action reference. Context is thus not by itself sufficient to supersede an "incompatible" word meaning. We argue that motor structure activation is part of a dynamic process that integrates the lexical meaning potential of a term and the context in the online construction of a situation model, which is a crucial process for fluent and efficient online language comprehension.
-
The inclusion fallacy is a phenomenon in which generalization from a specific premise category to a more general conclusion category is considered stronger than a generalization to a specific conclusion category nested within the more general set. Such inferences violate rational norms and are part of the reasoning fallacy literature that provides interesting tasks to explore cognitive and neural basis of reasoning. ⋯ A right fronto-parietal system was specifically recruited in response to detecting conflict associated with the heightened fallacy condition. These results are largely consistent with previous studies of reasoning fallacy and support a multiple systems model of reasoning.
-
As enhanced fronto-parietal network has been suggested to support reasoning ability of math-gifted adolescents, the main goal of this EEG source analysis is to investigate the temporal binding of the gamma-band (30-60 Hz) synchronization between frontal and parietal cortices in adolescents with exceptional mathematical ability, including the functional connectivity of gamma neurocognitive network, the temporal dynamics of fronto-parietal network (phase-locking durations and network lability in time domain), and the self-organized criticality of synchronizing oscillation. Compared with the average-ability subjects, the math-gifted adolescents show a highly integrated fronto-parietal network due to distant gamma phase-locking oscillations, which is indicated by lower modularity of the global network topology, more "connector bridges" between the frontal and parietal cortices and less "connector hubs" in the sensorimotor cortex. ⋯ The results from sample fitting in the power-law model further find that the phase-locking durations in the math-gifted brain abides by a wider interval of the power-law distribution. This phase-lock distribution mechanism could represent a relatively optimized pattern for the functional binding of frontal-parietal network, which underlies stable fronto-parietal connectivity and increases flexibility of timely network reconfiguration.