Front Hum Neurosci
-
Children born very preterm (≤32 weeks gestational age) without major intellectual or neurological impairments often express selective deficits in visual-perceptual abilities. The alterations in neurophysiological development underlying these problems, however, remain poorly understood. ⋯ We also uniquely demonstrate that slowing of alpha oscillations is associated with selective difficulties in visual-perceptual ability in very preterm children. These results indicate that region-specific slowing of alpha oscillations contribute to selective developmental difficulties prevalent in this population.
-
Amyloid hypothesis of Alzheimer's disease (AD) has recently been challenged by the increasing evidence for the role of vascular and hemostatic components that impair oxygen delivery to the brain. One such component is fibrin clots, which, when they become resistant to thrombolysis, can cause chronic inflammation. It is not known, however, why some cerebral thrombi are resistant to the fibrinolytic degradation, whereas fibrin clots formed at the site of vessel wall injuries are completely, although gradually, removed to ensure proper wound healing. ⋯ The RBC-fibrin aggregates can be disaggregated by magnesium ions and can also be prevented by certain polyphenols that are known to have beneficial effects in AD. In conclusion, we argue that AD can be prevented by: (1) limiting the dietary supply of trivalent iron contained in red and processed meat; (2) increasing the intake of chlorophyll-derived magnesium; and (3) consumption of foods rich in polyphenolic substances and certain aliphatic and aromatic unsaturated compounds. These dietary components are present in the Mediterranean diet known to be associated with the lower incidence of AD and other degenerative diseases.
-
Depending on severity, traumatic brain injury (TBI) induces immediate neuropathological effects that in the mildest form may be transient but as severity increases results in neural damage and degeneration. The first phase of neural degeneration is explainable by the primary acute and secondary neuropathological effects initiated by the injury; however, neuroimaging studies demonstrate a prolonged period of pathological changes that progressively occur even during the chronic phase. ⋯ Neuroimaging quantification in TBI demonstrates degenerative effects from brain injury over time. An adverse synergistic influence of TBI with aging may predispose the brain injured individual for the development of neuropsychiatric and neurodegenerative disorders long after surviving the brain injury.
-
We wanted to find out whether people who suffer from dizziness take longer than people who do not, to perform a motor imagery task that involves implicit whole body rotation. Our prediction was that people in the "dizzy" group would take longer at a left/right neck rotation judgment task but not a left/right hand judgment task, because actually performing the former, but not the latter, would exacerbate their dizziness. Secondly, we predicted that when dizzy participants responded to neck rotation images, responses would be greatest when images were in the upside down orientation; an orientation with greatest dizzy-provoking potential. ⋯ Results showed that participants in the "dizzy" group were slower than controls at both tasks (p = 0.015), but this was not related to task (p = 0.498). Similarly, "dizzy" participants were not proportionally worse at images of different orientations (p = 0.878). Our findings suggest impaired performance in dizzy people, an impairment that may be confined to motor imagery or may extend more generally.
-
Patients with chronic pain often show disturbances in their body perception. Understanding the exact role played by pain is however complex, as confounding factors can contribute to the observed deficits in these clinical populations. To address this question, acute experimental pain was used to test the effect of lateralized pain on body perception in healthy subjects. ⋯ These opposite patterns suggest that the shift in SBM is likely to be specifically linked to the stimulation modality. It is concluded that acute experimental pain can induce an SBM shift toward the stimulated side, which might be functionally beneficial to protect the painful area of the body. Interestingly, it appears to be easier to bias SBM toward the right side, regardless of the modality and of the stimulated side.