Front Hum Neurosci
-
Different anesthetic agents induce burst suppression in the electroencephalogram (EEG) at very deep levels of general anesthesia. EEG burst suppression has been identified to be a risk factor for postoperative delirium (POD). EEG based automated detection algorithms are used to detect burst suppression patterns during general anesthesia and a burst suppression ratio (BSR) is calculated. ⋯ Previous observations, mostly derived from animal studies, pointing out the substance-specific differences in bursting behavior, concur with our findings. Our findings of substance-specific EEG characteristics can provide information to help improve automated burst suppression detection in monitoring devices. More specific detection of burst suppression may be helpful to reduce excessive EEG effects of anesthesia and therefore the incidence of adverse outcomes such as POD.
-
Introduction: The importance of obstructive sleep apnea in patients undergoing surgery with general anesthesia is well-defined, but the surgical and anesthetic implications of other sleep disorders are less clear. We sought to evaluate response to surgery with general anesthesia in patients with central disorders of hypersomnolence or restless legs syndrome. Methods: We surveyed patients on their most recent surgical procedure with general anesthesia, querying about procedure, recovery, and any changes in sleep disorder symptomatology following the procedure. ⋯ While patients in both groups were equally likely to report surgical complications and difficulty awakening from anesthesia, hypersomnolent patients were more likely to report worsened sleepiness (40% of the hypersomnolent group vs. 11% of the RLS group, p = 0.001) and worsening of their sleep disorder symptoms (40% of the hypersomnolent group vs. 9% of the RLS group, p = 0.0001). Conclusion: Patients with sleep disorders other than sleep apnea frequently report surgical or anesthetic complications. Patients with hypersomnolence disorders commonly perceive that their sleep disorder worsened following a procedure; whether this might be related to long term effects of general anesthesia in a particularly vulnerable clinical population requires further study.
-
In order to achieve flexible and smooth walking, we must accomplish subtasks (e. g., loading response, forward propulsion or swing initiation) within a gait cycle. To evaluate subtasks within a gait cycle, the analysis of muscle synergies may be effective. In the case of walking, extracted sets of muscle synergies characterize muscle patterns that relate to the subtasks within a gait cycle. ⋯ Therefore, the local dynamic stability in the activations might depend on the requirement of motor output related to the subtasks within a gait cycle. We concluded that the local dynamic stability in the activation of muscle synergies decrease as walking speed accelerates. On the other hand, the orbital stability is sustained across broad walking speeds.
-
Background: The fibromyalgia (FM) physiopathology involves an intracortical excitability/inhibition imbalance as measured by transcranial magnetic stimulation measures (TMS). TMS measures provide an index that can help to understand how the basal neuronal plasticity state (i.e., levels of the serum neurotrophins brain-derived neurotrophic factor (BDNF) and S100-B protein) could predict the effect of therapeutic approaches on the cortical circuitries. We used an experimental paradigm to evaluate if pregabalin could be more effective than a placebo, to improve the disinhibition in the cortical circuitries in FM patients, than in healthy subjects (HS). ⋯ Conclusion: These results suggest that pregabalin's effect on cortical neural networks occurs, particularly under basal neuronal hyperexcitability, because its impact on the cortical excitability and the pain measures was observed only in the FM group. This indicates that pregabalin increased the CSP to induce inhibition in specific neural networks, while it increased the SICI to improve the excitability in other neurobiological systems. Trial registration in clinicaltrials.gov Identifier: NCT02639533.
-
Emotions can be perceived through the face, body, and whole-person, while previous studies on the abstract representations of emotions only focused on the emotions of the face and body. It remains unclear whether emotions can be represented at an abstract level regardless of all three sensory cues in specific brain regions. In this study, we used the representational similarity analysis (RSA) to explore the hypothesis that the emotion category is independent of all three stimulus types and can be decoded based on the activity patterns elicited by different emotions. ⋯ The whole-brain RSA revealed an emotion-specific but stimulus category-independent neural representation in the left postcentral gyrus, left inferior parietal lobe (IPL) and right superior temporal sulcus (STS). Further cluster-based MVPA revealed that only the left postcentral gyrus could successfully distinguish three types of emotions for the two stimulus type pairs (face-body and body-whole person) and happy versus angry/fearful, which could be considered as positive versus negative for three stimulus type pairs, when the cross-modal classification analysis was performed. Our study suggested that abstract representations of three emotions (angry, fearful, and happy) could extend from the face and body stimuli to whole-person stimuli and the findings of this study provide support for abstract representations of emotions in the left postcentral gyrus.