Int Rev Neurobiol
-
As currently understood, neuromodulation comprises not only electrical and magnetic stimulation but also chemical and genetic manipulations. The fact that adverse events induced by some of these treatments are largely reversible has sparked great interest in the development of new applications and targets for neuromodulatory treatments. As the number of indications and studies increases, so does research in associated fields. This chapter provides a brief introduction and discusses the overall contents of this volume of the International Review of Neurobiology.
-
Neuromodulation, specifically spinal cord stimulation (SCS), relieves pain and improves organ function. This chapter discusses the limited information presently available about the underlying mechanisms that explain the beneficial effects of treating patients with SCS. ⋯ This chapter presents the infant stage of studies that attempt to explain the mechanisms which come into play for treating neuropathic pain, ischemic pain in peripheral vascular disease, and diseases of the visceral organs, specifically the gastrointestinal tract and the heart. The basic science studies will demonstrate how SCS acts on various pain syndromes and diseases via multiple pathways in the central nervous system as well as in somatic structures and visceral organs.
-
The use of neuromodulatory techniques in the treatment of neurological disorders is expanding and now includes devices targeting the motor cortex, basal ganglia, spinal cord, peripheral nervous system, and autonomic nervous system. In this chapter, we review and discuss the current and past literature as well as review indications for each of these devices in the ongoing management of many common neurological diseases including chronic pain, Parkinson's disease, tremor, dystonia, and epilepsy. We also discuss and update mechanisms of deep brain stimulation and electrical neuro-network modulation.
-
Magnetoencephalography (MEG) is a noninvasive method which allows recordings of human brain activity with excellent temporal and good spatial resolution. In this chapter, we review applications of MEG in neuromodulation. ⋯ In particular, we discuss how MEG may be employed to study deep brain stimulation. In this context, we describe the problems arising from stimulation artifacts and present approaches to solve them.
-
Functional neurosurgical procedures used to treat the debilitating motor symptoms of Parkinson's disease and that target small subcortical structures have typically relied on semi-qualitative manual approaches that rely upon the establishing qualitative between volumetric imaging data and print atlases. This chapter reviews many new high -precision and -accuracy techniques that can be used for the full automated localization of these targets. These techniques rely on the a priori development of neuroanatomical atlases derived from magnetic resonance imaging data, high-resolution identification of subcortical structures from histology, and spatially localized data bases of intra-operative recordings and successful surgical outcomes. Other novel structural and functional MRI techniques that allow for the direct visualization of thalamic sub nuclei are also reviewed.