Int Rev Neurobiol
-
Neuropathic pain in the orofacial region is the clinical manifestation of trigeminal nerve injury following oral surgeries such as tooth extraction, dental implantation or tooth pulp treatment. Normally non-noxious touching of the facial skin or oral mucosa elicits strong pain named allodynia, and normally noxious stimulation causes intolerable pain named hyperalgesia in the trigeminal neuropathic pain patients. ⋯ In this chapter, we are focusing on trigeminal neuropathic pain, and describe our recent studies using animal models of trigeminal neuropathic pain. We also present the clinical assessment of trigeminal neuropathic pain patients to develop the appropriate treatment of trigeminal neuropathic pain.
-
Over the years it has become clear that the biological clock acts at different levels, ranging from the control of gene expression, protein stability, or subcellular localization of key proteins, to the fine tuning of network properties and modulation of input signals, ultimately ensuring that the organism will be best synchronized to a changing environment at the physiological and behavioral levels. The purpose of this chapter is to discuss the circadian control of clock outputs, spanning the most immediate ones within pacemaker neurons (i.e., membrane excitability, release of neurotransmitters, structural changes) to the circadian modulation of different behaviors (locomotor activity, learning and memory, social interaction), with a focus on the examples that shed light on the surprising degree of plasticity that characterizes the underlying circuits.
-
The catechol-O-methyltransferase (COMT) gene is of significant interest to neuroscience, due to its role in modulating dopamine function. COMT is dynamically regulated; its expression is altered during normal brain development and in response to environmental stimuli. ⋯ COMT contains several functional polymorphisms and haplotypes, including the well-studied Val158Met polymorphism. Here I review the regulation of COMT and the functional polymorphisms within its sequence with respect to brain function.
-
Review
Trait and neurobiological correlates of individual differences in dream recall and dream content.
Individuals differ greatly in their dream recall frequency, in their incidence of recalling types of dreams, such as nightmares, and in the content of their dreams. This chapter reviews work on the waking life correlates of these differences between people in their experience of dreaming and reviews some of the neurobiological correlates of these individual differences. ⋯ More successful has been the investigation of correlates of frequency of particular types of dreams, such as nightmares and lucid dreams, and also of how waking-life experience is associated with dream content. There is also potential in establishing neurobiological correlates of individual differences in dream recall and dream content, and recent work on this is reviewed.
-
Dreams have been studied from different perspectives: psychoanalysis, academic psychology, and neurosciences. After presenting the definition of dreaming and the methodological tools of dream research, the major findings regarding the phenomenology of dreaming and the factors influencing dream content are briefly reviewed. ⋯ Dreams also have an effect on subsequent waking life, e.g., on daytime mood and creativity. The question about the functions of dreaming is still unanswered and open to future research.