J Neuroinflamm
-
Evidence suggests that the inflammatory events in the acute phase of spinal cord injury (SCI) exacerbate the initial trauma to the cord leading to poor functional recovery. As a result, minimizing the detrimental aspects of the inflammatory response after SCI is a promising treatment strategy. In this regard, immunoglobulin G (IgG) from pooled human serum is a promising treatment candidate. Due to its putative, though poorly characterized immuno-modulatory effects, IgG has been used clinically to treat neuroinflammatory disorders such as Guillain-Barré syndrome, but its effects in neurotrauma remain largely unexplored. ⋯ The findings from this study indicate that IgG is a novel immuno-modulatory therapy which shows promise as a potential treatment for SCI.
-
In the orofacial region, limited information is available concerning pathological tongue pain, such as inflammatory pain or neuropathic pain occurring in the tongue. Here, we tried for the first time to establish a novel animal model of inflammatory tongue pain in rats and to investigate the roles of metabotropic glutamate receptor 5 (mGluR5)-extracellular signal-regulated kinase (ERK) signaling in this process. ⋯ The present study constructed a new animal model of inflammatory tongue pain in rodents, and demonstrated pivotal roles of the mGluR5-pERK signaling in the development of mechanical and heat hypersensitivity that evolved in the inflamed tongue. This tongue-inflamed model might be useful for future studies to further elucidate molecular and cellular mechanisms of pathological tongue pain such as burning mouth syndrome.
-
The kinin B(1) receptor (B(1)R) is upregulated by pro-inflammatory cytokines and oxydative stress, which are enhanced by transient receptor potential vanilloid subtype 1 (TRPV1) activation. To examine the link between TRPV1 and B(1)R in inflammatory pain, this study aimed to determine the ability of TRPV1 to regulate microglial B(1)R expression in the spinal cord dorsal horn, and the underlying mechanism. ⋯ This study highlights a new mechanism for B(1)R induction via TRPV1 activation and establishes a link between these two pro-nociceptive receptors in inflammatory pain.
-
The striato-nigral projecting pathway contains the highest concentrations of dynorphin in the brain. The functional role of this opioid peptide in the regulation of mesencephalic dopaminergic (DAergic) neurons is not clear. We reported previously that exogenous dynorphin exerts potent neuroprotective effects against inflammation-induced dopaminergic neurodegeneration in vitro. The present study was performed to investigate whether endogenous dynorphin has neuroprotective roles in vivo. ⋯ The in vivo results presented here extend our previous in vitro findings and further indicate that endogenous dynorphin plays a critical role in protecting dopaminergic neurons through its anti-inflammatory effects.
-
The neuroinflammatory responses in the spinal cord following bone cancer development have been shown to play an important role in cancer-induced bone pain (CIBP). Lipoxins (LXs), endogenous lipoxygenase-derived eicosanoids, represent a unique class of lipid mediators that possess a wide spectrum of anti-inflammatory and pro-resolving actions. In this study, we investigated the effects of intrathecal injection with lipoxin and related analogues on CIBP in rats. ⋯ Taken together, the results of our study suggest that LXs and analogues exert strong analgesic effects on CIBP. These analgesic effects in CIBP are associated with suppressing the expression of spinal proinflammatory cytokines.