J Neuroinflamm
-
Spinal Toll-like receptors (TLRs) and signaling intermediaries have been implicated in persistent pain states. We examined the roles of two major TLR signaling pathways and selected TLRs in a mononeuropathic allodynia. ⋯ These observations suggest a critical role for the MyD88 pathway in initiating neuropathic pain, but a distinct role for the TRIF pathway and interferon in regulating neuropathic pain phenotypes in male mice.
-
Intracerebral hemorrhage (ICH) is a devastating stroke subtype characterized by a prominent neuroinflammatory response. Antagonism of pro-inflammatory cytokines by specific antibodies represents a compelling therapeutic strategy to improve neurological outcome in patients after ICH. To test this hypothesis, the tumor necrosis factor alpha (TNF-α) antibody CNTO5048 was administered to mice after ICH induction, and histological and functional endpoints were assessed. ⋯ Post-injury treatment with the TNF-α antibody CNTO5048 results in less neuroinflammation and improved functional outcomes in a murine model of ICH.
-
It has recently been demonstrated that palmitoylethanolamide (PEA), an endogenous lipid amide belonging to the N-acylethanolamine family, exerts neuroprotection in central nervous system (CNS) pathologies. In recent studies, we have demonstrated that treatment with PEA significantly reduced inflammatory secondary events associated with spinal cord injury (SCI). Since oxidative stress is considered to play an important role in neuroinflammatory disorders, in the present work we studied a new composite, a formulation including PEA and the antioxidant compound luteolin (Lut), subjected to an ultramicronization process, co-ultraPEALut. We investigated the effect of co-ultraPEALut (in the respective fixed doses of 10:1 in mass) in both an ex vivo organotypic spinal cord culture model and an in vivo model of SCI. ⋯ The present study demonstrates that the protective effect of PEA on SCI-associated neuroinflammation could be improved by co-ultramicronization with Lut possibly due to its antioxidant properties.
-
Tumor necrosis factor-α (TNF-α) is an important inflammatory factor produced by activated macrophages and monocytes and plays an important role in the pathogenesis of diabetic peripheral neuropathy (DPN). To evaluate the effect of TNF-α signaling suppression and the potential of TNF-α in the treatment of DPN, a recombinant human TNF-α receptor-antibody fusion protein (rhTNFR:Fc) was used. We focused on the pathophysiology of the sciatic nerve and examined the expression of myelin basic protein (MBP) under DPN status with or without TNF-α inhibition. ⋯ Our study demonstrates that TNF-α plays a key role in the pathogenesis of DPN and its inhibition by rhTNFR:Fc can prove to be a useful therapeutic strategy for the treatment of and/or prevention from DPN symptoms.
-
Palmitoylethanolamide (PEA) is an endogenous fatty acid amide displaying anti-inflammatory and analgesic actions. Moreover, several data have suggested that PEA reduced inflammation and tissue injury associated with spinal cord trauma and showed a regulatory role for peroxisome proliferator-activated receptor (PPAR)-α signaling in the neuroprotective effect of PEA. However, several other mechanisms could explain the anti-inflammatory and anti-hyperalgesic effects of PEA, including the activation of PPAR-δ and PPAR-γ. The aim of the present study was to carefully investigate the exact contribution of PPAR-δ and PPAR-γ in addition to PPAR-α, in the protective effect of PEA on secondary inflammatory damage associated with an experimental model of spinal cord injury (SCI). ⋯ This study indicates that PPAR-δ and PPAR-γ can also contribute to the anti-inflammatory activity of PEA in SCI.