Mol Pain
-
To assess the effect of variations in GTP cyclohydrolase gene (GCH1) on pain sensitivity in humans. ⋯ Considering population stratification, previously reported associations between GCH1 genetic variations and pain sensitivity appear weak or negligible in this well characterized model of pain.
-
Animal and clinical studies have revealed that focal peripheral nerve axon demyelination is accompanied by nociceptive pain behavior. C-C and C-X-C chemokines and their receptors have been strongly implicated in demyelinating polyneuropathies and persistent pain syndromes. Herein, we studied the degree to which chronic nociceptive pain behavior is correlated with the neuronal expression of chemokines and their receptors following unilateral lysophosphatidylcholine (LPC)-induced focal demyelination of the sciatic nerve in rats. ⋯ These results suggest that the presence of chemokine signaling by both injured and adjacent, uninjured sensory neurons is correlated with the maintenance phase of a persistent pain state, suggesting that chemokine receptor antagonists may be an important therapeutic intervention for chronic pain.
-
Inflammation and nociceptive sensitization are hallmarks of tissue surrounding surgical incisions. Recent studies demonstrate that several cytokines may participate in the enhancement of nociception near these wounds. Since opioids like morphine interact with neutrophils and other immunocytes, it is possible that morphine exerts some of its antinociceptive action after surgical incision by altering the vigor of the inflammatory response. On the other hand, keratinocytes also express opioid receptors and have the capacity to produce cytokines after injury. Our studies were directed towards determining if opioids alter cytokine production near incisions and to identify cell populations responsible for producing these cytokines. ⋯ Acute morphine administration of doses as low as 0.1 mg/kg reduces peri-incisional cytokine expression. A reduction in neutrophil infiltration does not provide a complete explanation for this effect, and keratinocytes may be responsible for some incision area cytokine production. These studies suggest that morphine may alter the inflammatory milieu of incisional wounds, but these alterations do not likely contribute significantly to analgesia in the acute setting.
-
In general, opioids that induce the recycling of mu-opioid receptors (MORs) promote little desensitization, although morphine is one exception to this rule. While morphine fails to provoke significant internalization of MORs in cultured cells, it does stimulate profound desensitization. In contrast, morphine does promote some internalization of MORs in neurons although this does not prevent this opioid from inducing strong antinociceptive tolerance. ⋯ In the nervous system, morphine induces a strong desensitization before promoting the phosphorylation and recycling of MORs. The long-term sequestering of morphine-activated Galpha subunits by certain RGS proteins reduces the responses to this opioid in neurons. This phenomenon probably increases free Gbetagamma dimers in the receptor environment and leads to GRK phosphorylation and internalization of the MORs. Although, the internalization of the MORs permits the transfer of opioid-activated Galpha subunits to the RGSZ2 proteins, it interferes with the stabilization of this regulatory process and recycled MORs recover the control on these Galpha subunits and opioid tolerance develops slowly.
-
An understanding of how the brain changes in chronic pain or responds to pharmacological or other therapeutic interventions has been significantly changed as a result of developments in neuroimaging of the CNS. These developments have occurred in 3 domains : (1) Anatomical Imaging which has demonstrated changes in brain volume in chronic pain; (2) Functional Imaging (fMRI) that has demonstrated an altered state in the brain in chronic pain conditions including back pain, neuropathic pain, and complex regional pain syndromes. In addition the response of the brain to drugs has provided new insights into how these may modify normal and abnormal circuits (phMRI or pharmacological MRI); (3) Chemical Imaging (Magnetic Resonance Spectroscopy or MRS) has helped our understanding of measures of chemical changes in chronic pain. Taken together these three domains have already changed the way in which we think of pain - it should now be considered an altered brain state in which there may be altered functional connections or systems and a state that has components of degenerative aspects of the CNS.