Mol Pain
-
Disinhibition of neurons in the superficial spinal dorsal horn, via microglia - neuron signaling leading to disruption of chloride homeostasis, is a potential cellular substrate for neuropathic pain. But, a central unresolved question is whether this disinhibition can transform the activity and responses of spinal nociceptive output neurons to account for the symptoms of neuropathic pain. ⋯ The transformation of discharge activity and sensory specificity provides an aberrant signal in a primarily nociceptive ascending pathway that may serve as a basis for the symptoms of neuropathic pain.
-
Long-term potentiation (LTP) in the anterior cingulate cortex (ACC) is believed to be critical for higher brain functions including emotion, learning, memory and chronic pain. N-methyl-D-aspartate (NMDA) receptor-dependent LTP is well studied and is thought to be important for learning and memory in mammalian brains. As the downstream target of NMDA receptors, the extracellular signal-regulated kinase (ERK) in the mitogen-activated protein kinase (MAPK) cascade has been extensively studied for its involvement in synaptic plasticity, learning and memory in hippocampus. ⋯ Moreover, we found that these two inhibitors had no effect on the maintenance of cingulate LTP. Inhibitors of c-Jun N-terminal kinase (JNK) and p38, other members of MAPK family, SP600125 and SB203850, suppressed the induction of cingulate LTP generated by the pairing protocol. Thus, our study suggests that the MAPK signaling pathway is involved in the induction of cingulate LTP and plays a critical role in physiological conditions.
-
Among different forms of persistent pain, neuropathic pain presents as a most difficult task for basic researchers and clinicians. Despite recent rapid development of neuroscience and modern techniques related to drug discovery, effective drugs based on clear basic mechanisms are still lacking. ⋯ I will present the problem of neuropathic pain as a rather difficult task for neuroscientists, and we may have to wait for a long time before we fully understand how brain encode, store, and retrieve painful information after the injury. I propose that neuropathic pain as a major brain disease, rather being a clinic problem due to peripheral injury.
-
Animal and clinical studies have revealed that focal peripheral nerve axon demyelination is accompanied by nociceptive pain behavior. C-C and C-X-C chemokines and their receptors have been strongly implicated in demyelinating polyneuropathies and persistent pain syndromes. Herein, we studied the degree to which chronic nociceptive pain behavior is correlated with the neuronal expression of chemokines and their receptors following unilateral lysophosphatidylcholine (LPC)-induced focal demyelination of the sciatic nerve in rats. ⋯ These results suggest that the presence of chemokine signaling by both injured and adjacent, uninjured sensory neurons is correlated with the maintenance phase of a persistent pain state, suggesting that chemokine receptor antagonists may be an important therapeutic intervention for chronic pain.
-
To assess the effect of variations in GTP cyclohydrolase gene (GCH1) on pain sensitivity in humans. ⋯ Considering population stratification, previously reported associations between GCH1 genetic variations and pain sensitivity appear weak or negligible in this well characterized model of pain.