Mol Pain
-
Gene transfer to nociceptive neurons of the dorsal root ganglia (DRG) is a promising approach to dissect mechanisms of pain in rodents and is a potential therapeutic strategy for the treatment of persistent pain disorders such as neuropathic pain. A number of studies have demonstrated transduction of DRG neurons using herpes simplex virus, adenovirus and more recently, adeno-associated virus (AAV). Recombinant AAV are currently the gene transfer vehicles of choice for the nervous system and have several advantages over other vectors, including stable and safe gene expression. We have explored the capacity of recombinant AAV serotype 6 (rAAV2/6) to deliver genes to DRG neurons and characterized the transduction of nociceptors through five different routes of administration in mice. ⋯ We have found that rAAV2/6 is an efficient vector to deliver transgenes to nociceptive neurons in mice. Furthermore, the characterization of the transduction profile may facilitate gene transfer studies to dissect mechanisms behind neuropathic pain.
-
Neuropathic pain is a debilitating pain condition that occurs after nerve damage. Such pain is considered to be a reflection of the aberrant excitability of dorsal horn neurons. Emerging lines of evidence indicate that spinal microglia play a crucial role in neuronal excitability and the pathogenesis of neuropathic pain, but the mechanisms underlying neuron-microglia communications in the dorsal horn remain to be fully elucidated. ⋯ Furthermore, PDGF-BB-induced tactile allodynia was prevented by a daily intrathecal administration of minocycline, which is known to inhibit microglia activation. Moreover, in rats with an injury to the fifth lumbar spinal nerve (an animal model of neuropathic pain), the immunofluorescence for p-PDGFR beta was markedly enhanced exclusively in microglia in the ipsilateral dorsal horn. Together, our findings suggest that spinal microglia critically contribute to PDGF-induced tactile allodynia, and it is also assumed that microglial PDGF signaling may have a role in the pathogenesis of neuropathic pain.
-
To examine biochemical differences in the anterior cingulate cortex (ACC) and insula during the interictal phase of migraine patients. We hypothesized that there may be differences in levels of excitatory amino acid neurotransmitters and/or their derivatives in migraine group based on their increased sensitivity to pain. ⋯ These results are consistent with glutamatergic abnormalities in the ACC and insula in migraine patients during their interictal period compared to healthy controls. An alteration in excitatory amino acid neurotransmitters and their derivatives may be a contributing factor for migraineurs for a decrease in sensitivity for migraine or a consequence of the chronic migraine state. Such findings, if extrapolated to other regions of the brain would offer new opportunities to modulate central system as interictal or preemptive medications in these patients.
-
Neuropathic pain caused by peripheral nerve injury is a chronic disorder that represents a significant clinical challenge because the pathological mechanisms have not been fully elucidated. Several studies have suggested the involvement of various sodium channels, including tetrodotoxin-resistant NaV1.8, in affected dorsal root ganglion (DRG) neurons. We have hypothesized that altered local expression of NaV1.8 in the peripheral axons of DRG neurons could facilitate nociceptive signal generation and propagation after neuropathic injury. ⋯ Cuff entrapment injury resulted in significantly elevated axonal excitability and increased NaV1.8 immunoreactivity in rat sciatic nerves. The concomitant axonal accumulation of NaV1.8 mRNA may play a role in the pathogenesis of this model of neuropathic pain.
-
Little is known about whether peripheral nerve injury during the early postnatal period modulates synaptic efficacy in the immature superficial dorsal horn (SDH) of the spinal cord, or whether the neonatal SDH network is sensitive to the proinflammatory cytokine TNFalpha under neuropathic conditions. Thus we examined the effects of TNFalpha on synaptic transmission and intrinsic membrane excitability in developing rat SDH neurons in the absence or presence of sciatic nerve damage. ⋯ Developing SDH neurons become susceptible to regulation by TNFalpha following peripheral nerve injury in the neonate. This may include both a greater efficacy of glutamatergic synapses as well as an increase in the intrinsic excitability of immature dorsal horn neurons. However, neonatal sciatic nerve damage alone did not significantly modulate synaptic transmission or neuronal excitability in the SDH, which could reflect a relatively weak expression of TNFalpha in the injured spinal cord at early ages. The above data suggest that although the sensitivity of the SDH network to proinflammatory cytokines after nerve injury is present from the first days of life, the profile of spinal cytokine expression under neuropathic conditions may be highly age-dependent.