Mol Pain
-
Dorsal root ganglia (DRG)-neurons are commonly characterized immunocytochemically. Cells are mostly grouped by the experimenter's eye as "marker-positive" and "marker-negative" according to their immunofluorescence intensity. Classification criteria remain largely undefined. Overcoming this shortfall, we established a quantitative automated microscopy (QuAM) for a defined and multiparametric analysis of adherent heterogeneous primary neurons on a single cell base.The growth factors NGF, GDNF and EGF activate the MAP-kinase Erk1/2 via receptor tyrosine kinase signalling. NGF and GDNF are established factors in regeneration and sensitization of nociceptive neurons. If also the tissue regenerating growth factor, EGF, influences nociceptors is so far unknown. We asked, if EGF can act on nociceptors, and if QuAM can elucidate differences between NGF, GDNF and EGF induced Erk1/2 activation kinetics. Finally, we evaluated, if the investigation of one signalling component allows prediction of the behavioral response to a reagent not tested on nociceptors such as EGF. ⋯ QuAM is a suitable if not necessary tool to analyze activation of endogenous signalling in heterogeneous cultures. NGF, GDNF and EGF stimulation of DRG-neurons shows differential Erk1/2 activation responses and a corresponding differential behavioral phenotype. Thus, in addition to expression-markers also signalling-activity can be taken for functional subgroup differentiation and as predictor of behavioral outcome. The anti-nociceptive function of EGF is an intriguing result in the context of tissue damage but also for understanding pain resulting from EGF-receptor block during cancer therapy.
-
Nociception requires transduction and impulse electrogenesis in nerve fibers which innervate the body surface, including the skin. However, the molecular substrates for transduction and action potential initiation in nociceptors are incompletely understood. In this study, we examined the expression and distribution of Na+/Ca2+ exchanger (NCX) and voltage-gated sodium channel isoforms in intra-epidermal free nerve terminals. ⋯ NCX2, as well as NaV1.6, NaV1.7, NaV1.8 and NaV1.9, are present in most intra-epidermal free nerve endings. The presence of NCX2, together with multiple sodium channel isoforms, in free nerve endings may have important functional implications.
-
Spontaneous (non-evoked) pain is a major clinical symptom of neuropathic syndromes, one that is understudied in basic pain research for practical reasons and because of a lack of consensus over precisely which behaviors reflect spontaneous pain in laboratory animals. It is commonly asserted that rodents experiencing pain in a hind limb exhibit hypolocomotion and decreased rearing, engage in both reflexive and organized limb directed behaviors, and avoid supporting their body weight on the affected side. Furthermore, it is assumed that the extent of these positive or negative behaviors can be used as a dependent measure of spontaneous chronic pain severity in such animals. In the present study, we tested these assumptions via blinded, systematic observation of digital video of mice with nerve injuries (chronic constriction or spared nerve injury), and automated assessment of locomotor behavior using photocell detection and dynamic weight bearing (i.e., gait) using the CatWalk system. ⋯ We conclude that spontaneous neuropathic pain in mice cannot be assessed using any of these measures, and thus caution is warranted in making such assertions.
-
A direct role of sodium channels in pain has recently been confirmed by establishing a monogenic link between SCN9A, the gene which encodes sodium channel Nav1.7, and pain disorders in humans, with gain-of-function mutations causing severe pain syndromes, and loss-of-function mutations causing congenital indifference to pain. Expression of sodium channel Nav1.8 in DRG neurons has also been shown to be essential for the manifestation of mutant Nav1.7-induced neuronal hyperexcitability. These findings have confirmed key roles of Nav1.7 and Nav1.8 in pain and identify these channels as novel targets for pain therapeutic development. Ranolazine preferentially blocks cardiac late sodium currents at concentrations that do not significantly reduce peak sodium current. Ranolazine also blocks wild-type Nav1.7 and Nav1.8 channels in a use-dependent manner. However, ranolazine's effects on gain-of-function mutations of Nav1.7 and on DRG neuron excitability have not been investigated. We used voltage- and current-clamp recordings to evaluate the hypothesis that ranolazine may be effective in regulating Nav1.7-induced DRG neuron hyperexcitability. ⋯ Our data suggest that ranalozine can attenuate hyperexcitability of DRG neurons over-expressing wild-type Nav1.7 channels, as occurs in acquired neuropathic and inflammatory pain, and thus merits further study as an alternative to existing non-selective sodium channel blockers.
-
Our previous study demonstrated that nitric oxide (NO) contributes to long-term potentiation (LTP) of C-fiber-evoked field potentials by tetanic stimulation of the sciatic nerve in the spinal cord in vivo. Ryanodine receptor (RyR) is a downstream target for NO. The present study further explored the role of RyR in synaptic plasticity of the spinal pain pathway. ⋯ These data indicate that activation of presynaptic RyRs play a crucial role in the induction of LTP in the spinal pain pathway, probably through enhancement of transmitter release.