Mol Pain
-
The development of analgesic tolerance following chronic morphine administration can be a significant clinical problem. Preclinical studies demonstrate that chronic morphine administration induces spinal gliosis and that inhibition of gliosis prevents the development of analgesic tolerance to opioids. Many studies have also demonstrated that ultra-low doses of naltrexone inhibit the development of spinal morphine antinociceptive tolerance and clinical studies demonstrate that it has opioid sparing effects. In this study we demonstrate that ultra-low dose naltrexone attenuates glial activation, which may contribute to its effects on attenuating tolerance. ⋯ Taken together, we demonstrate a positive correlation between the prevention of analgesic tolerance and the inhibition of spinal gliosis by treatment with ultra-low dose naltrexone. This research provides further validation for using ultra-low dose opioid receptor antagonists in the treatment of various pain syndromes.
-
Neuronal transduction by adeno-associated viral (AAV) vectors has been demonstrated in cortex, brainstem, cerebellum, and sensory ganglia. Intrathecal delivery of AAV serotypes that transduce neurons in dorsal root ganglia (DRG) and spinal cord offers substantial opportunities to 1) further study mechanisms underlying chronic pain, and 2) develop novel gene-based therapies for the treatment and management of chronic pain using a non-invasive delivery route with established safety margins. In this study we have compared expression patterns of AAV serotype 5 (AAV5)- and AAV serotype 8 (AAV8)-mediated gene transfer to sensory neurons following intrathecal delivery by direct lumbar puncture. ⋯ The present study demonstrates the feasibility of minimally invasive gene transfer to sensory neurons using direct lumbar puncture and provides evidence for differential targeting of subtypes of DRG neurons by AAV vectors.
-
Randomized Controlled Trial
Imaging the functional connectivity of the Periaqueductal Gray during genuine and sham electroacupuncture treatment.
Electroacupuncture (EA) is currently one of the most popular acupuncture modalities. However, the continuous stimulation characteristic of EA treatment presents challenges to the use of conventional functional Magnetic Resonance Imaging (fMRI) approaches for the investigation of neural mechanisms mediating treatment response because of the requirement for brief and intermittent stimuli in event related or block designed task paradigms. A relatively new analysis method, functional connectivity fMRI (fcMRI), has great potential for studying continuous treatment modalities such as EA. In a previous study, we found that, compared with sham acupuncture, EA can significantly reduce Periaqueductal Gray (PAG) activity when subsequently evoked by experimental pain. Given the PAG's important role in mediating acupuncture analgesia, in this study we investigated functional connectivity with the area of the PAG we previously identified and how that connectivity was affected by genuine and sham EA. ⋯ Our findings indicate the intrinsic functional connectivity changes among key brain regions in the pain matrix and default mode network during genuine EA compared with sham EA. We speculate that continuous genuine EA stimulation can modify the coupling of spontaneous activity in brain regions that play a role in modulating pain perception.
-
Brief heat stimuli that excite nociceptors innervated by finely myelinated (Aδ) fibers evoke an initial, sharp, well-localized pain ("first pain") that is distinguishable from the delayed, less intense, more prolonged dull pain attributed to nociceptors innervated by unmyelinated (C) fibers ("second pain"). In the present study, we address the question of whether a brief, noxious heat stimulus that excites cutaneous Aδ fibers activates a distinct set of forebrain structures preferentially in addition to those with similar responses to converging input from C fibers. Heat stimuli at two temperatures were applied to the dorsum of the left hand of healthy volunteers in a functional brain imaging (fMRI) paradigm and responses analyzed in a set of volumes of interest (VOI). ⋯ These findings show that two sets of forebrain structures mediate the initial sharp pain evoked by brief cutaneous heat stimulation: those responding preferentially to the brief stimulation of Aδ heat nociceptors and those with similar responses to converging inputs from the painless stimulation of C fibers. Our results suggest a unique and specific physiological basis, at the forebrain level, for the "first pain" sensation that has long been attributed to Aδ fiber stimulation and support the concept that both specific and convergent mechanisms act concurrently to mediate pain.
-
Ablation of TRPV1-expressing nociceptive fibers with the potent capsaicin analog resiniferatoxin (RTX) results in long lasting pain relief. RTX is particularly adaptable to focal application, and the induced chemical axonopathy leads to analgesia with a duration that is influenced by dose, route of administration, and the rate of fiber regeneration. TRPV1 is expressed in a subpopulation of unmyelinated C- and lightly myelinated Adelta fibers that detect changes in skin temperature at low and high rates of noxious heating, respectively. Here we investigate fiber-type specific behaviors, their time course of recovery and molecular correlates of axon damage and nociception using infrared laser stimuli following an RTX-induced peripheral axonopathy. ⋯ Behavioral recovery following peripheral RTX treatment is linked to regeneration of TRPV1-expressing Adelta and C-fibers and sustained expression of molecular markers. Infrared laser stimulation is a potentially valuable tool for evaluating the behavioral role of Adelta fibers in pain and pain control.