Mol Pain
-
Chronic pain occurs when normally protective acute pain becomes pathologically persistent. We examined here whether an isoform of protein kinase C (PKC), PKMζ, that underlies long-term memory storage in various brain regions, also sustains nociceptive plasticity in spinal cord dorsal horn (SCDH) mediating persistent pain. ⋯ These results suggest spinal PKMζ is essential for the maintenance of persistent pain by sustaining spinal nociceptive plasticity.
-
Several studies have investigated the involvement of nitric oxide (NO) in acute and chronic pain using mice lacking a single NO synthase (NOS) gene among the three isoforms: neuronal (nNOS), inducible (iNOS) and endothelial (eNOS). However, the precise role of NOS/NO in pain states remains to be determined owing to the substantial compensatory interactions among the NOS isoforms. Therefore, in this study, we used mice lacking all three NOS genes (n/i/eNOS-/-mice) and investigated the behavioral phenotypes in a series of acute and chronic pain assays. ⋯ Our results provide evidence that the NOS/NO pathway contributes to behavioral pain responses evoked by tissue injury and nerve injury. In particular, nNOS may be important for spinal microglial activation and tactile allodynia after nerve injury.
-
The capsaicin receptor, transient receptor potential vanilloid type -1 (TRPV1) directs complex roles in signal transduction including the detection of noxious stimuli arising from cellular injury and inflammation. Under pathophysiologic conditions, TRPV1 mRNA and receptor protein expression are elevated in dorsal root ganglion (DRG) neurons for weeks to months and is associated with hyperalgesia. Building on our previous isolation of a promoter system for the rat TRPV1 gene, we investigated the proximal TRPV1 P2-promoter by first identifying candidate Sp1-like transcription factors bound in vivo to the P2-promoter using chromatin immunoprecipitation (ChIP) assay. We then performed deletion analysis of GC-box binding sites, and quantified promoter activity under conditions of Sp1 / Sp4 over-expression versus inhibition/knockdown. mRNA encoding Sp1, Sp4 and TRPV1 were quantified by qRT-PCR under conditions of Sp1/Sp4 over-expression or siRNA mediated knockdown in cultured DRG neurons. ⋯ Based on these studies, we now propose a model of TRPV1 expression that is dependent on Sp1-like transcription factors with Sp4 playing a predominant role in activating TRPV1 RNA transcription in DRG neurons. Given that increases of TRPV1 expression have been implicated in a wide range of pathophysiologic states including persistent painful conditions, blockade of Sp1-like transcription factors represents a novel direction in therapeutic strategies.
-
The anterior cingulate cortex (ACC) has been related to the affective component of pain. Dopaminergic mesocortical circuits, including the ACC, are able to inhibit neuropathic nociception measured as autotomy behaviour. We determined the changes in dopamine D1 and D2 (D1R and D2R) receptor expression in the ACC (cg1 and cg2) in an animal model of neuropathic pain. The neuropathic group had noxious heat applied in the right hind paw followed 30 min. later by right sciatic denervation. Autotomy score (AS) was recorded for eight days and subsequently classified in low, medium and high AS groups. The control consisted of naïve animals.A semiquantitative RT-PCR procedure was done to determine mRNA levels for D1R and D2R in cg1 and cg2, and protein levels were measured by Western Blot. ⋯ This is the first evidence of an increase of inhibitory dopaminergic receptor (D2R) mRNA and protein in cg1 in correlation with nociceptive behaviour in a neuropathic model of pain in the rat.
-
Clinical studies of osteoarthritis (OA) suggest central sensitization may contribute to the chronic pain experienced. This preclinical study used the monosodium iodoacetate (MIA) model of OA joint pain to investigate the potential contribution of spinal sensitization, in particular spinal glial cell activation, to pain behaviour in this model. Experimental OA was induced in the rat by the intra-articular injection of MIA and pain behaviour (change in weight bearing and distal allodynia) was assessed. Spinal cord microglia (Iba1 staining) and astrocyte (GFAP immunofluorescence) activation were measured at 7, 14 and 28 days post MIA-treatment. The effects of two known inhibitors of glial activation, nimesulide and minocycline, on pain behaviour and activation of microglia and astrocytes were assessed. ⋯ Here we provide evidence for a contribution of spinal glial cells to pain behaviour, in particular distal allodynia, in this model of osteoarthritic pain. Our data suggest there is a potential role of glial cells in the central sensitization associated with OA, which may provide a novel analgesic target for the treatment of OA pain.